Monte Carlo Modelling of Echoes Reflected by High-Rise Architectural Landmarks in UAV Anticollision Radar

IF 1.5 4区 管理学 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Pawel Biernacki, Urszula Libal
{"title":"Monte Carlo Modelling of Echoes Reflected by High-Rise Architectural Landmarks in UAV Anticollision Radar","authors":"Pawel Biernacki,&nbsp;Urszula Libal","doi":"10.1049/rsn2.70078","DOIUrl":null,"url":null,"abstract":"<p>This paper presents a novel approach to synthesising radar echoes for unmanned aerial vehicle (UAV) anticollision systems, specifically focusing on the challenges posed by high-rise architectural landmarks in urban environments. We employ a Monte Carlo method to generate synthetic radar data that accurately reflects the statistical properties of real-world radar echoes, derived from data collected using a custom-designed X-band radar. Our methodology involves the probabilistic modelling of radar echoes for three distinct classes: large-scale arena building, sky-scraping slender spire and background noise, using kernel density estimation (KDE). This approach allows for the creation of a large database of synthetic radar signatures essential for training and validating machine learning algorithms intended for use in UAV collision avoidance systems. The results demonstrate the efficacy of our method in preserving the statistical characteristics of real radar data, enabling the generation of high-fidelity synthetic echoes that can significantly enhance the development and testing of UAV navigation and obstacle avoidance systems.</p>","PeriodicalId":50377,"journal":{"name":"Iet Radar Sonar and Navigation","volume":"19 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2025-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/rsn2.70078","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iet Radar Sonar and Navigation","FirstCategoryId":"94","ListUrlMain":"https://ietresearch.onlinelibrary.wiley.com/doi/10.1049/rsn2.70078","RegionNum":4,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents a novel approach to synthesising radar echoes for unmanned aerial vehicle (UAV) anticollision systems, specifically focusing on the challenges posed by high-rise architectural landmarks in urban environments. We employ a Monte Carlo method to generate synthetic radar data that accurately reflects the statistical properties of real-world radar echoes, derived from data collected using a custom-designed X-band radar. Our methodology involves the probabilistic modelling of radar echoes for three distinct classes: large-scale arena building, sky-scraping slender spire and background noise, using kernel density estimation (KDE). This approach allows for the creation of a large database of synthetic radar signatures essential for training and validating machine learning algorithms intended for use in UAV collision avoidance systems. The results demonstrate the efficacy of our method in preserving the statistical characteristics of real radar data, enabling the generation of high-fidelity synthetic echoes that can significantly enhance the development and testing of UAV navigation and obstacle avoidance systems.

Abstract Image

无人机防撞雷达高层建筑地标反射回波的蒙特卡罗建模
本文提出了一种用于无人机(UAV)防撞系统的雷达回波合成新方法,特别关注城市环境中高层建筑地标所带来的挑战。我们采用蒙特卡罗方法生成合成雷达数据,准确反映真实世界雷达回波的统计特性,这些数据来自使用定制设计的x波段雷达收集的数据。我们的方法包括使用核密度估计(KDE)对三种不同类型的雷达回波进行概率建模:大型竞技场建筑、高耸的细长尖塔和背景噪声。这种方法允许创建一个大型合成雷达特征数据库,这对于训练和验证用于无人机防撞系统的机器学习算法至关重要。结果证明了我们的方法在保留真实雷达数据的统计特征方面的有效性,从而能够生成高保真的合成回波,从而可以显着增强无人机导航和避障系统的开发和测试。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Iet Radar Sonar and Navigation
Iet Radar Sonar and Navigation 工程技术-电信学
CiteScore
4.10
自引率
11.80%
发文量
137
审稿时长
3.4 months
期刊介绍: IET Radar, Sonar & Navigation covers the theory and practice of systems and signals for radar, sonar, radiolocation, navigation, and surveillance purposes, in aerospace and terrestrial applications. Examples include advances in waveform design, clutter and detection, electronic warfare, adaptive array and superresolution methods, tracking algorithms, synthetic aperture, and target recognition techniques.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信