Scaling limit of first-passage percolation geodesics on planar maps

IF 1.2 2区 数学 Q1 MATHEMATICS
Emmanuel Kammerer
{"title":"Scaling limit of first-passage percolation geodesics on planar maps","authors":"Emmanuel Kammerer","doi":"10.1112/jlms.70312","DOIUrl":null,"url":null,"abstract":"<p>We establish the scaling limit of the geodesics to the root for the first-passage percolation distance on random planar maps. We first describe the scaling limit of the number of faces along the geodesics. This result enables us to compare the metric balls for the first-passage percolation and the dual-graph distance. It also enables us to give an upper bound for the diameter of large random maps. Then, we describe the scaling limit of the tree of first-passage percolation geodesics to the root via a stochastic coalescing flow of pure jump diffusions. Using this stochastic flow, we also construct some random metric spaces which we conjecture to be the scaling limits of random planar maps with high degrees. The main tool in this work is a time reversal of the uniform peeling exploration.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"112 4","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2025-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the London Mathematical Society-Second Series","FirstCategoryId":"100","ListUrlMain":"https://londmathsoc.onlinelibrary.wiley.com/doi/10.1112/jlms.70312","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We establish the scaling limit of the geodesics to the root for the first-passage percolation distance on random planar maps. We first describe the scaling limit of the number of faces along the geodesics. This result enables us to compare the metric balls for the first-passage percolation and the dual-graph distance. It also enables us to give an upper bound for the diameter of large random maps. Then, we describe the scaling limit of the tree of first-passage percolation geodesics to the root via a stochastic coalescing flow of pure jump diffusions. Using this stochastic flow, we also construct some random metric spaces which we conjecture to be the scaling limits of random planar maps with high degrees. The main tool in this work is a time reversal of the uniform peeling exploration.

Abstract Image

平面地图上第一通道渗透测地线的标度极限
我们建立了随机平面图上第一通道渗透距离的测地线到根的尺度极限。我们首先描述了沿测地线的面数的缩放极限。这个结果使我们能够比较第一通道渗流和双图距离的公制球。它还使我们能够给出大型随机映射直径的上界。然后,我们通过纯跳跃扩散的随机聚结流描述了第一通道渗透测地线树到根的尺度极限。利用这一随机流,构造了一些随机度量空间,我们推测这些度量空间是随机高度图的标度极限。这项工作的主要工具是均匀剥落勘探的时间反转。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
186
审稿时长
6-12 weeks
期刊介绍: The Journal of the London Mathematical Society has been publishing leading research in a broad range of mathematical subject areas since 1926. The Journal welcomes papers on subjects of general interest that represent a significant advance in mathematical knowledge, as well as submissions that are deemed to stimulate new interest and research activity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信