Fabrication and Properties of a Thermal Conduction-Enhanced SiO2–Ag Double-Shell Nanoencapsulated Lauric Acid Phase Change Material

IF 3.6 4区 工程技术 Q3 ENERGY & FUELS
Tonghe Li, Siyu Hao, Huanmei Yuan, Sitong Liu, Dengti Hu, Hao Bai
{"title":"Fabrication and Properties of a Thermal Conduction-Enhanced SiO2–Ag Double-Shell Nanoencapsulated Lauric Acid Phase Change Material","authors":"Tonghe Li,&nbsp;Siyu Hao,&nbsp;Huanmei Yuan,&nbsp;Sitong Liu,&nbsp;Dengti Hu,&nbsp;Hao Bai","doi":"10.1002/ente.202500148","DOIUrl":null,"url":null,"abstract":"<p>To significantly improve the thermal conductivity of nanocapsule shells, lauric acid (LA)/SiO<sub>2</sub>–Ag composite shell phase change nanocapsules are synthesized via sol–gel and chemical reduction methods. Three types with varying Ag shell thicknesses are obtained, showing particle sizes of 946–982 nm, latent heat of 21.59–59.81 J g<sup>−1</sup>, and volume encapsulation ratio (<span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>R</mi>\n <mi>V</mi>\n </msub>\n </mrow>\n <annotation>$R_{\\text{V}}$</annotation>\n </semantics></math>) of 63.78–86.96%. After 1000 thermal cycles, the latent heat decay is only 1.87%, indicating good thermal reliability. Specifically, a detailed porosity correction is performed, and the corrected effective thermal conductivity of LA/SiO<sub>2</sub>–Ag nanocapsules is 22.11–80.04 W (m K)<sup>−1</sup>, indicating that the thermal conductivity of LA/SiO<sub>2</sub>–Ag nanocapsules is significantly improved. Furthermore, a 1D unsteady-state thermal conduction device tested the heat transfer performance of stacked nanocapsules. The results demonstrate that LA/SiO<sub>2</sub>–Ag nanocapsules exhibit a significantly faster heat transfer rate than LA/SiO<sub>2</sub> nanocapsules, reducing heat transfer time by 108.1%. The simulation results further reveal that the Ag shell facilitates interfacial heat transfer in stacked nanocapsules, allowing heat to propagate rapidly from the bottom to the top. Additionally, for single nanocapsules, the high thermal conductivity of the Ag shell promotes uniform inward heat transfer, expediting phase transition and enhancing thermal performance.</p>","PeriodicalId":11573,"journal":{"name":"Energy technology","volume":"13 10","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2025-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy technology","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ente.202500148","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

To significantly improve the thermal conductivity of nanocapsule shells, lauric acid (LA)/SiO2–Ag composite shell phase change nanocapsules are synthesized via sol–gel and chemical reduction methods. Three types with varying Ag shell thicknesses are obtained, showing particle sizes of 946–982 nm, latent heat of 21.59–59.81 J g−1, and volume encapsulation ratio ( R V $R_{\text{V}}$ ) of 63.78–86.96%. After 1000 thermal cycles, the latent heat decay is only 1.87%, indicating good thermal reliability. Specifically, a detailed porosity correction is performed, and the corrected effective thermal conductivity of LA/SiO2–Ag nanocapsules is 22.11–80.04 W (m K)−1, indicating that the thermal conductivity of LA/SiO2–Ag nanocapsules is significantly improved. Furthermore, a 1D unsteady-state thermal conduction device tested the heat transfer performance of stacked nanocapsules. The results demonstrate that LA/SiO2–Ag nanocapsules exhibit a significantly faster heat transfer rate than LA/SiO2 nanocapsules, reducing heat transfer time by 108.1%. The simulation results further reveal that the Ag shell facilitates interfacial heat transfer in stacked nanocapsules, allowing heat to propagate rapidly from the bottom to the top. Additionally, for single nanocapsules, the high thermal conductivity of the Ag shell promotes uniform inward heat transfer, expediting phase transition and enhancing thermal performance.

Abstract Image

热导增强SiO2-Ag双壳纳米月桂酸相变材料的制备与性能研究
为了显著提高纳米胶囊壳的导热性,采用溶胶-凝胶法和化学还原法合成了月桂酸/ SiO2-Ag复合壳相变纳米胶囊。得到了3种不同银壳厚度的银壳,其粒径为946 ~ 982 nm,潜热为21.59 ~ 59.81 J g−1,包封比(R V $R_{\text{V}}$)为63.78 ~ 86.96%。经过1000次热循环后,潜热衰减率仅为1.87%,热可靠性良好。具体来说,进行了详细的孔隙度校正,校正后的LA/ SiO2-Ag纳米胶囊的有效导热系数为22.11-80.04 W (m K)−1,表明LA/ SiO2-Ag纳米胶囊的导热系数得到了显著提高。此外,利用一维非稳态导热装置测试了堆叠纳米胶囊的传热性能。结果表明,LA/SiO2 - ag纳米胶囊的传热速度明显快于LA/SiO2纳米胶囊,传热时间缩短了108.1%。模拟结果进一步表明,银壳有利于堆叠纳米胶囊的界面传热,使热量从底部快速传播到顶部。此外,对于单个纳米胶囊,银壳的高导热性促进了均匀的向内传热,加速了相变并增强了热性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Energy technology
Energy technology ENERGY & FUELS-
CiteScore
7.00
自引率
5.30%
发文量
0
审稿时长
1.3 months
期刊介绍: Energy Technology provides a forum for researchers and engineers from all relevant disciplines concerned with the generation, conversion, storage, and distribution of energy. This new journal shall publish articles covering all technical aspects of energy process engineering from different perspectives, e.g., new concepts of energy generation and conversion; design, operation, control, and optimization of processes for energy generation (e.g., carbon capture) and conversion of energy carriers; improvement of existing processes; combination of single components to systems for energy generation; design of systems for energy storage; production processes of fuels, e.g., hydrogen, electricity, petroleum, biobased fuels; concepts and design of devices for energy distribution.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信