Moments, sums of squares, and tropicalization

IF 1.2 2区 数学 Q1 MATHEMATICS
Grigoriy Blekherman, Felipe Rincón, Rainer Sinn, Cynthia Vinzant, Josephine Yu
{"title":"Moments, sums of squares, and tropicalization","authors":"Grigoriy Blekherman,&nbsp;Felipe Rincón,&nbsp;Rainer Sinn,&nbsp;Cynthia Vinzant,&nbsp;Josephine Yu","doi":"10.1112/jlms.70311","DOIUrl":null,"url":null,"abstract":"<p>We use tropicalization to study the duals to cones of nonnegative polynomials and sums of squares on a semialgebraic set <span></span><math>\n <semantics>\n <mi>S</mi>\n <annotation>$S$</annotation>\n </semantics></math>. The truncated cones of moments of measures supported on the set <span></span><math>\n <semantics>\n <mi>S</mi>\n <annotation>$S$</annotation>\n </semantics></math> are dual to nonnegative polynomials on <span></span><math>\n <semantics>\n <mi>S</mi>\n <annotation>$S$</annotation>\n </semantics></math>, while “pseudomoments” are dual to sums of squares approximations to nonnegative polynomials. We provide explicit combinatorial descriptions of tropicalizations of the moment and pseudomoment cones, and demonstrate their usefulness in distinguishing between nonnegative polynomials and sums of squares. We give examples that show new limitations of sums of squares approximations of nonnegative polynomials. When the semialgebraic set is defined by binomial inequalites, its moment and pseudomoment cones are closed under Hadamard product. In this case, their tropicalizations are polyhedral cones that encode all binomial inequalities on the moment and pseudomoment cones.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"112 4","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://londmathsoc.onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.70311","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the London Mathematical Society-Second Series","FirstCategoryId":"100","ListUrlMain":"https://londmathsoc.onlinelibrary.wiley.com/doi/10.1112/jlms.70311","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We use tropicalization to study the duals to cones of nonnegative polynomials and sums of squares on a semialgebraic set S $S$ . The truncated cones of moments of measures supported on the set S $S$ are dual to nonnegative polynomials on S $S$ , while “pseudomoments” are dual to sums of squares approximations to nonnegative polynomials. We provide explicit combinatorial descriptions of tropicalizations of the moment and pseudomoment cones, and demonstrate their usefulness in distinguishing between nonnegative polynomials and sums of squares. We give examples that show new limitations of sums of squares approximations of nonnegative polynomials. When the semialgebraic set is defined by binomial inequalites, its moment and pseudomoment cones are closed under Hadamard product. In this case, their tropicalizations are polyhedral cones that encode all binomial inequalities on the moment and pseudomoment cones.

Abstract Image

矩,平方和,和热带化
利用热带化方法研究了半代数集S$ S$上非负多项式和平方和对锥的对偶。集合S$ S$上支持的测度矩的截锥是S$ S$上的非负多项式的对偶,而“伪矩”是非负多项式的平方和近似的对偶。我们提供了力矩锥和伪矩锥的显式组合描述,并证明了它们在区分非负多项式和平方和方面的有用性。我们给出的例子显示了非负多项式的平方和近似的新局限性。当用二项式不等式定义半代数集时,其矩锥和伪矩锥在Hadamard积下闭合。在这种情况下,他们的热带化是多面体锥,编码所有二项式不等式上的矩和伪矩锥。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
186
审稿时长
6-12 weeks
期刊介绍: The Journal of the London Mathematical Society has been publishing leading research in a broad range of mathematical subject areas since 1926. The Journal welcomes papers on subjects of general interest that represent a significant advance in mathematical knowledge, as well as submissions that are deemed to stimulate new interest and research activity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信