Efficient Right-Decoupled Composite Manifold Optimization for Visual Inertial Odometry

IF 1.7 4区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Yangyang Ning
{"title":"Efficient Right-Decoupled Composite Manifold Optimization for Visual Inertial Odometry","authors":"Yangyang Ning","doi":"10.1111/coin.70127","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>A composite manifold is defined as a concatenation of noninteracting manifolds, which may experience some loss of accuracy and consistency when propagating IMU dynamics based on Lie theory. However, from the perspective of ordinary differential equation modeling in dynamics, they demonstrate similar convergence rates and reduced computational complexity in iterative manifold optimization. In this context, this paper proposes a right decoupled composite manifold <span></span><math>\n <semantics>\n <mrow>\n <mfenced>\n <mrow>\n <mi>SO</mi>\n <mo>(</mo>\n <mn>3</mn>\n <mo>)</mo>\n <mo>,</mo>\n <msup>\n <mrow>\n <mi>ℝ</mi>\n </mrow>\n <mrow>\n <mn>3</mn>\n </mrow>\n </msup>\n <mo>,</mo>\n <msup>\n <mrow>\n <mi>ℝ</mi>\n </mrow>\n <mrow>\n <mn>3</mn>\n </mrow>\n </msup>\n </mrow>\n </mfenced>\n </mrow>\n <annotation>$$ \\left\\langle \\mathbf{SO}(3),{\\mathbb{R}}^3,{\\mathbb{R}}^3\\right\\rangle $$</annotation>\n </semantics></math> for visual-inertial sliding-window iterative optimization compared with other manifolds including chained translation and rotation <span></span><math>\n <semantics>\n <mrow>\n <mfenced>\n <mrow>\n <mi>SO</mi>\n <mo>(</mo>\n <mn>3</mn>\n <mo>)</mo>\n <mo>×</mo>\n <msup>\n <mrow>\n <mi>ℝ</mi>\n </mrow>\n <mrow>\n <mn>3</mn>\n </mrow>\n </msup>\n <mo>,</mo>\n <msup>\n <mrow>\n <mi>ℝ</mi>\n </mrow>\n <mrow>\n <mn>3</mn>\n </mrow>\n </msup>\n </mrow>\n </mfenced>\n </mrow>\n <annotation>$$ \\left\\langle \\mathbf{SO}(3)\\times {\\mathbb{R}}^3,{\\mathbb{R}}^3\\right\\rangle $$</annotation>\n </semantics></math>, special Euclidean group <span></span><math>\n <semantics>\n <mrow>\n <mfenced>\n <mrow>\n <mi>SE</mi>\n <mo>(</mo>\n <mn>3</mn>\n <mo>)</mo>\n <mo>,</mo>\n <msup>\n <mrow>\n <mi>ℝ</mi>\n </mrow>\n <mrow>\n <mn>3</mn>\n </mrow>\n </msup>\n </mrow>\n </mfenced>\n </mrow>\n <annotation>$$ \\left\\langle \\mathbf{SE}(3),{\\mathbb{R}}^3\\right\\rangle $$</annotation>\n </semantics></math>, and extended pose <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mrow>\n <mi>SE</mi>\n </mrow>\n <mrow>\n <mn>2</mn>\n </mrow>\n </msub>\n <mo>(</mo>\n <mn>3</mn>\n <mo>)</mo>\n </mrow>\n <annotation>$$ {\\mathbf{SE}}_2(3) $$</annotation>\n </semantics></math> concerning the orientation, position, and velocity estimation. Furthermore, the inertial measurement unit (IMU) dynamics is propagated through extended pose <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mrow>\n <mi>SE</mi>\n </mrow>\n <mrow>\n <mn>2</mn>\n </mrow>\n </msub>\n <mo>(</mo>\n <mn>3</mn>\n <mo>)</mo>\n </mrow>\n <annotation>$$ {\\mathbf{SE}}_2(3) $$</annotation>\n </semantics></math> with half rotation to maintain the accuracy of IMU preintegration. Moreover, to enhance robustness, a robustified Cauchy loss function is employed. The proposed method is evaluated with simulation and experiments on static and more challenging dynamic environments, considering its accuracy, efficiency, and robustness. Additionally, all necessary Jacobians for visual reprojection residuals and IMU preintegration residuals are provided in analytical form with numerical verification.</p>\n </div>","PeriodicalId":55228,"journal":{"name":"Computational Intelligence","volume":"41 5","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2025-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Intelligence","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/coin.70127","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

A composite manifold is defined as a concatenation of noninteracting manifolds, which may experience some loss of accuracy and consistency when propagating IMU dynamics based on Lie theory. However, from the perspective of ordinary differential equation modeling in dynamics, they demonstrate similar convergence rates and reduced computational complexity in iterative manifold optimization. In this context, this paper proposes a right decoupled composite manifold SO ( 3 ) , 3 , 3 $$ \left\langle \mathbf{SO}(3),{\mathbb{R}}^3,{\mathbb{R}}^3\right\rangle $$ for visual-inertial sliding-window iterative optimization compared with other manifolds including chained translation and rotation SO ( 3 ) × 3 , 3 $$ \left\langle \mathbf{SO}(3)\times {\mathbb{R}}^3,{\mathbb{R}}^3\right\rangle $$ , special Euclidean group SE ( 3 ) , 3 $$ \left\langle \mathbf{SE}(3),{\mathbb{R}}^3\right\rangle $$ , and extended pose SE 2 ( 3 ) $$ {\mathbf{SE}}_2(3) $$ concerning the orientation, position, and velocity estimation. Furthermore, the inertial measurement unit (IMU) dynamics is propagated through extended pose SE 2 ( 3 ) $$ {\mathbf{SE}}_2(3) $$ with half rotation to maintain the accuracy of IMU preintegration. Moreover, to enhance robustness, a robustified Cauchy loss function is employed. The proposed method is evaluated with simulation and experiments on static and more challenging dynamic environments, considering its accuracy, efficiency, and robustness. Additionally, all necessary Jacobians for visual reprojection residuals and IMU preintegration residuals are provided in analytical form with numerical verification.

Abstract Image

有效的右解耦复合流形视觉惯性里程计优化
复合流形被定义为非相互作用流形的串联,在基于李氏理论传播IMU动力学时,可能会出现一些准确性和一致性的损失。然而,从动力学常微分方程建模的角度来看,它们在迭代流形优化中表现出相似的收敛速度和降低的计算复杂度。在此背景下,本文提出了一种右解耦复合流形SO (3),是,与其他流形(包括链式平移和旋转)相比,用于视觉惯性滑动窗口迭代优化的1 / 3 $$ \left\langle \mathbf{SO}(3),{\mathbb{R}}^3,{\mathbb{R}}^3\right\rangle $$所以(3)x,y3 $$ \left\langle \mathbf{SO}(3)\times {\mathbb{R}}^3,{\mathbb{R}}^3\right\rangle $$,特殊欧几里德群SE (3);y3 $$ \left\langle \mathbf{SE}(3),{\mathbb{R}}^3\right\rangle $$,和扩展位姿SE 2 (3) $$ {\mathbf{SE}}_2(3) $$关于方向、位置和速度的估计。此外,通过半旋转扩展位姿SE 2 (3) $$ {\mathbf{SE}}_2(3) $$传播惯性测量单元(IMU)动力学,以保持IMU预积分的精度。此外,为了增强鲁棒性,采用了一种鲁棒化的柯西损失函数。通过静态和更具挑战性的动态环境的仿真和实验,对该方法进行了精度、效率和鲁棒性评价。此外,还以解析形式给出了视觉重投影残差和IMU预积分残差所需的雅可比矩阵,并进行了数值验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computational Intelligence
Computational Intelligence 工程技术-计算机:人工智能
CiteScore
6.90
自引率
3.60%
发文量
65
审稿时长
>12 weeks
期刊介绍: This leading international journal promotes and stimulates research in the field of artificial intelligence (AI). Covering a wide range of issues - from the tools and languages of AI to its philosophical implications - Computational Intelligence provides a vigorous forum for the publication of both experimental and theoretical research, as well as surveys and impact studies. The journal is designed to meet the needs of a wide range of AI workers in academic and industrial research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信