Focused Segmentation in Biomedical Imaging via Attention Driven GAN-UNet

IF 1.7 4区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Anamika Rangra, Chandan Kumar
{"title":"Focused Segmentation in Biomedical Imaging via Attention Driven GAN-UNet","authors":"Anamika Rangra,&nbsp;Chandan Kumar","doi":"10.1111/coin.70128","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Brain tumor segmentation is critical for diagnosis, treatment planning, and evaluation. However, existing methods such as U-Net, FCN, and Mask R-CNN often struggle with capturing fine-grained tumor boundaries, handling complex tumor heterogeneity, and maintaining high sensitivity across different tumor subregions. To overcome these challenges, this study proposes an Attention-Driven GAN-UNet framework that integrates U-Net with Generative Adversarial Networks (GANs) and a Channel-Spatial Attention Module (CSAM). This innovative approach enhances segmentation accuracy and focus mapping by directing the network's attention to clinically relevant regions. Trained on the BraTS 2020 dataset, our method surpasses traditional techniques, achieving a Dice Similarity Coefficient (DSC) of 0.99. The proposed framework visualizes intricate tumor morphologies, reduces false positives, and offers robust computational efficiency, making AttnGAN-UNet a promising tool for clinical brain tumor segmentation and analysis.</p>\n </div>","PeriodicalId":55228,"journal":{"name":"Computational Intelligence","volume":"41 5","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2025-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Intelligence","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/coin.70128","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Brain tumor segmentation is critical for diagnosis, treatment planning, and evaluation. However, existing methods such as U-Net, FCN, and Mask R-CNN often struggle with capturing fine-grained tumor boundaries, handling complex tumor heterogeneity, and maintaining high sensitivity across different tumor subregions. To overcome these challenges, this study proposes an Attention-Driven GAN-UNet framework that integrates U-Net with Generative Adversarial Networks (GANs) and a Channel-Spatial Attention Module (CSAM). This innovative approach enhances segmentation accuracy and focus mapping by directing the network's attention to clinically relevant regions. Trained on the BraTS 2020 dataset, our method surpasses traditional techniques, achieving a Dice Similarity Coefficient (DSC) of 0.99. The proposed framework visualizes intricate tumor morphologies, reduces false positives, and offers robust computational efficiency, making AttnGAN-UNet a promising tool for clinical brain tumor segmentation and analysis.

Abstract Image

关注驱动GAN-UNet在生物医学成像中的焦点分割
脑肿瘤的分割对诊断、治疗计划和评估至关重要。然而,现有的方法,如U-Net、FCN和Mask R-CNN,往往难以捕获细粒度的肿瘤边界,处理复杂的肿瘤异质性,并保持不同肿瘤亚区域的高灵敏度。为了克服这些挑战,本研究提出了一个注意力驱动的GAN-UNet框架,该框架将U-Net与生成对抗网络(gan)和通道空间注意力模块(CSAM)集成在一起。这种创新的方法通过将网络的注意力引导到临床相关区域,提高了分割的准确性和焦点映射。在BraTS 2020数据集上训练,我们的方法超越了传统技术,实现了0.99的骰子相似系数(DSC)。所提出的框架可以可视化复杂的肿瘤形态,减少假阳性,并提供强大的计算效率,使AttnGAN-UNet成为临床脑肿瘤分割和分析的有前途的工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computational Intelligence
Computational Intelligence 工程技术-计算机:人工智能
CiteScore
6.90
自引率
3.60%
发文量
65
审稿时长
>12 weeks
期刊介绍: This leading international journal promotes and stimulates research in the field of artificial intelligence (AI). Covering a wide range of issues - from the tools and languages of AI to its philosophical implications - Computational Intelligence provides a vigorous forum for the publication of both experimental and theoretical research, as well as surveys and impact studies. The journal is designed to meet the needs of a wide range of AI workers in academic and industrial research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信