A One-Dimensional Variational Precipitation Retrieval Algorithm Considering Cloud Types for Western North Pacific Tropical Cyclones Using FengYun-3E Microwave Sounders

IF 3.4 2区 地球科学 Q2 METEOROLOGY & ATMOSPHERIC SCIENCES
Jintao Xu, Ziqiang Ma, Hao Hu, Xiaoqing Li, Xiang Fang
{"title":"A One-Dimensional Variational Precipitation Retrieval Algorithm Considering Cloud Types for Western North Pacific Tropical Cyclones Using FengYun-3E Microwave Sounders","authors":"Jintao Xu,&nbsp;Ziqiang Ma,&nbsp;Hao Hu,&nbsp;Xiaoqing Li,&nbsp;Xiang Fang","doi":"10.1029/2025JD044523","DOIUrl":null,"url":null,"abstract":"<p>Accurate precipitation retrieval from passive microwave observations is essential for global meteorological and climatological studies particularly in tropical cyclone (TC) environments. Building upon the Global Scene-Dependent Atmospheric Retrieval Testbed (GSDART), this study develops an enhanced one-dimensional variational (1DVAR) precipitation retrieval algorithm specifically tailored for monitoring TCs based on Chinese FengYun-3E (FY-3E) passive microwave observations over the northwestern Pacific. The algorithm introduces a precipitation-type differentiation module into the 1DVAR framework (1DVARDPT), employs the Advanced Radiative Transfer Modeling System (ARMS) as the forward operator, and utilizes observations from the FY-3E microwave humidity and temperature sounders (MWTHS). A comprehensive comparative analysis from 19 TCs reveals that considering precipitation types significantly improves retrieval performances—reducing relative bias from −9.89% to 2.02% and mean absolute error (MAE) from 0.38 mm/hr to 0.32 mm/hr—while enhancing the detection of both light/moderate and heavy precipitation. Furthermore, using ARMS instead of the Community Radiative Transfer Model (CRTM) as the forward operator markedly reduces the systematic underestimation seen in conventional retrievals (bias improved from −23.50% to −9.89%), demonstrating ARMS's superiority in precipitation-sensitive radiative transfer modeling. The findings from this study underscore the importance of accounting for precipitation-type variability in 1DVAR retrievals and highlight the strong potential of FY-3E observations and ARMS for advancing microwave-based precipitation estimation.</p>","PeriodicalId":15986,"journal":{"name":"Journal of Geophysical Research: Atmospheres","volume":"130 19","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Atmospheres","FirstCategoryId":"89","ListUrlMain":"https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2025JD044523","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Accurate precipitation retrieval from passive microwave observations is essential for global meteorological and climatological studies particularly in tropical cyclone (TC) environments. Building upon the Global Scene-Dependent Atmospheric Retrieval Testbed (GSDART), this study develops an enhanced one-dimensional variational (1DVAR) precipitation retrieval algorithm specifically tailored for monitoring TCs based on Chinese FengYun-3E (FY-3E) passive microwave observations over the northwestern Pacific. The algorithm introduces a precipitation-type differentiation module into the 1DVAR framework (1DVARDPT), employs the Advanced Radiative Transfer Modeling System (ARMS) as the forward operator, and utilizes observations from the FY-3E microwave humidity and temperature sounders (MWTHS). A comprehensive comparative analysis from 19 TCs reveals that considering precipitation types significantly improves retrieval performances—reducing relative bias from −9.89% to 2.02% and mean absolute error (MAE) from 0.38 mm/hr to 0.32 mm/hr—while enhancing the detection of both light/moderate and heavy precipitation. Furthermore, using ARMS instead of the Community Radiative Transfer Model (CRTM) as the forward operator markedly reduces the systematic underestimation seen in conventional retrievals (bias improved from −23.50% to −9.89%), demonstrating ARMS's superiority in precipitation-sensitive radiative transfer modeling. The findings from this study underscore the importance of accounting for precipitation-type variability in 1DVAR retrievals and highlight the strong potential of FY-3E observations and ARMS for advancing microwave-based precipitation estimation.

Abstract Image

考虑云型的西北太平洋热带气旋一维变分降水反演算法
从被动微波观测中精确提取降水对于全球气象和气候研究,特别是热带气旋环境研究至关重要。本研究基于全球场景相关大气检索试验台(GSDART),基于中国风云3e (FY-3E)被动微波观测,开发了一种针对西北太平洋地区TCs监测的增强型一维变分(1DVAR)降水检索算法。该算法在1DVAR框架中引入降水类型判别模块(1DVARDPT),采用先进辐射传输建模系统(ARMS)作为正演算子,并利用FY-3E微波温湿度探测仪(MWTHS)的观测数据。19个TCs的综合对比分析表明,考虑降水类型显著提高了检索性能,将相对偏差从- 9.89%降低到2.02%,平均绝对误差(MAE)从0.38 mm/hr降低到0.32 mm/hr,同时增强了对轻、中、强降水的检测。此外,使用ARMS代替群落辐射传输模型(CRTM)作为正演算子,显著降低了传统反演中的系统低估(偏差从- 23.50%提高到- 9.89%),表明ARMS在降水敏感辐射传输模型中的优势。本研究的结果强调了在1DVAR反演中考虑降水类型变率的重要性,并强调了FY-3E观测和ARMS在推进微波降水估计方面的强大潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Geophysical Research: Atmospheres
Journal of Geophysical Research: Atmospheres Earth and Planetary Sciences-Geophysics
CiteScore
7.30
自引率
11.40%
发文量
684
期刊介绍: JGR: Atmospheres publishes articles that advance and improve understanding of atmospheric properties and processes, including the interaction of the atmosphere with other components of the Earth system.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信