Madison J. Pfau, Sven Weber, Susan Kennedy, Henrik Krehenwinkel, George Roderick, Rosemary Gillespie
{"title":"Invasive Spiders and Their Microbiomes: Patterns of Microbial Variation in Native and Invasive Species in Hawai'i","authors":"Madison J. Pfau, Sven Weber, Susan Kennedy, Henrik Krehenwinkel, George Roderick, Rosemary Gillespie","doi":"10.1002/ece3.72175","DOIUrl":null,"url":null,"abstract":"<p>Invasive species can have detrimental impacts on the community structure and native species persistence, causing cascading impacts on ecosystem function. These effects are amplified in remote island ecosystems that are characterized by non-representative and often diverse biota. The mechanisms behind successful invasions, particularly of arthropods, are varied, but growing evidence suggests that invasive species escape from their native predators and competitors. Recent research has suggested that gut microbiota can play an important role in arthropod fitness, with vertically transmitted endosymbionts and horizontally acquired microbes performing different functions. Here, we explored the extent to which the microbiome may facilitate the ability of spiders to exploit and ultimately adapt to novel environments. We examined co-occurring pairs of native and invasive spiders across three locations in the Hawaiian Islands and compared them with mainland counterparts to test two core predictions: (1) gut microbiota would be shaped primarily by local environmental filters rather than invasion status, and (2) vertically transmitted endosymbionts would show stronger host-specificity and reduced diversity in invasives. Using 16S rRNA amplicon sequencing, we found that the site explained 11.7% of gut-microbial compositional variance compared to 6.5% for host species. These results suggest that each spider maintains a species-specific level of α-diversity but reassembles taxonomic composition according to local microbial pools, thus indicating high context dependence in environmental filtering. Invasive species were found to have a lower relative abundance of gut endosymbiont taxa, with one species, <i>Badumna longinqua</i>, showing little to no endosymbiont presence across sites, and the other, <i>Steatoda grossa</i>, exhibiting low but site-specific abundance. We observed a strong localization effect, suggesting that these endosymbionts are also being acquired from local environments, not carried from ancestral ranges. These results suggest host–symbiont interactions have differential impacts on native and invasive species and that microbiota may facilitate the success of spiders in novel environments.</p>","PeriodicalId":11467,"journal":{"name":"Ecology and Evolution","volume":"15 10","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ece3.72175","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecology and Evolution","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ece3.72175","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Invasive species can have detrimental impacts on the community structure and native species persistence, causing cascading impacts on ecosystem function. These effects are amplified in remote island ecosystems that are characterized by non-representative and often diverse biota. The mechanisms behind successful invasions, particularly of arthropods, are varied, but growing evidence suggests that invasive species escape from their native predators and competitors. Recent research has suggested that gut microbiota can play an important role in arthropod fitness, with vertically transmitted endosymbionts and horizontally acquired microbes performing different functions. Here, we explored the extent to which the microbiome may facilitate the ability of spiders to exploit and ultimately adapt to novel environments. We examined co-occurring pairs of native and invasive spiders across three locations in the Hawaiian Islands and compared them with mainland counterparts to test two core predictions: (1) gut microbiota would be shaped primarily by local environmental filters rather than invasion status, and (2) vertically transmitted endosymbionts would show stronger host-specificity and reduced diversity in invasives. Using 16S rRNA amplicon sequencing, we found that the site explained 11.7% of gut-microbial compositional variance compared to 6.5% for host species. These results suggest that each spider maintains a species-specific level of α-diversity but reassembles taxonomic composition according to local microbial pools, thus indicating high context dependence in environmental filtering. Invasive species were found to have a lower relative abundance of gut endosymbiont taxa, with one species, Badumna longinqua, showing little to no endosymbiont presence across sites, and the other, Steatoda grossa, exhibiting low but site-specific abundance. We observed a strong localization effect, suggesting that these endosymbionts are also being acquired from local environments, not carried from ancestral ranges. These results suggest host–symbiont interactions have differential impacts on native and invasive species and that microbiota may facilitate the success of spiders in novel environments.
期刊介绍:
Ecology and Evolution is the peer reviewed journal for rapid dissemination of research in all areas of ecology, evolution and conservation science. The journal gives priority to quality research reports, theoretical or empirical, that develop our understanding of organisms and their diversity, interactions between them, and the natural environment.
Ecology and Evolution gives prompt and equal consideration to papers reporting theoretical, experimental, applied and descriptive work in terrestrial and aquatic environments. The journal will consider submissions across taxa in areas including but not limited to micro and macro ecological and evolutionary processes, characteristics of and interactions between individuals, populations, communities and the environment, physiological responses to environmental change, population genetics and phylogenetics, relatedness and kin selection, life histories, systematics and taxonomy, conservation genetics, extinction, speciation, adaption, behaviour, biodiversity, species abundance, macroecology, population and ecosystem dynamics, and conservation policy.