High-Performance Tungsten Components via Low-Temperature Spray-Dried Powder and Low-Energy SLM: A Breakthrough for Refractory Metal Additive Manufacturing

IF 2 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Yajuan Zhang, Shang Wang, Xingwei Liu, Zhe Sun, Huagang Liu, Dunhua Huang
{"title":"High-Performance Tungsten Components via Low-Temperature Spray-Dried Powder and Low-Energy SLM: A Breakthrough for Refractory Metal Additive Manufacturing","authors":"Yajuan Zhang,&nbsp;Shang Wang,&nbsp;Xingwei Liu,&nbsp;Zhe Sun,&nbsp;Huagang Liu,&nbsp;Dunhua Huang","doi":"10.1002/eng2.70426","DOIUrl":null,"url":null,"abstract":"<p>Tungsten's ultrahigh melting point and thermal stress-induced cracking pose significant challenges for additive manufacturing. To address this, we propose a novel strategy combining low-temperature spray drying with optimized heat treatment to fabricate spherical tungsten (W) powders with high sphericity (≥ 95%), narrow particle size distribution (10–50 μm), and excellent flowability (28 s/50 g). Compared to conventional plasma-spheroidized powders, our method reduces production costs and enables selective laser melting (SLM) at remarkably low energy densities (200–600 J/mm<sup>3</sup>), far below the typical range of 500–1500 J/mm<sup>3</sup>. Mechanistic analysis reveals that the tailored powder structure suppresses thermal shrinkage cracks by lowering the critical ratio of laser energy density to scanning speed (E/v ≤ 2). At E/v = 1.7 (170 W, 300 mm/s, 0.08 mm spacing), the printed components achieve a relative density of 94.1% (vs. 96% for high-energy SLM) and microhardness of 488 kg/mm<sup>2</sup>, surpassing commercial cast tungsten (423 kg/mm<sup>2</sup>). Notably, nanoindentation tests demonstrate exceptional plasticity (indentation work: 0.204 kN·m/m<sup>2</sup>), comparable to single-crystal tungsten. This work not only establishes a low-cost pathway for refractory metal additive manufacturing but also provides a universal parameter framework (E/v threshold) to mitigate defects in high-melting-point alloys and improves the issues of element evaporation and combustion in additive manufacturing of refractory alloys.</p>","PeriodicalId":72922,"journal":{"name":"Engineering reports : open access","volume":"7 10","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eng2.70426","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering reports : open access","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/eng2.70426","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Tungsten's ultrahigh melting point and thermal stress-induced cracking pose significant challenges for additive manufacturing. To address this, we propose a novel strategy combining low-temperature spray drying with optimized heat treatment to fabricate spherical tungsten (W) powders with high sphericity (≥ 95%), narrow particle size distribution (10–50 μm), and excellent flowability (28 s/50 g). Compared to conventional plasma-spheroidized powders, our method reduces production costs and enables selective laser melting (SLM) at remarkably low energy densities (200–600 J/mm3), far below the typical range of 500–1500 J/mm3. Mechanistic analysis reveals that the tailored powder structure suppresses thermal shrinkage cracks by lowering the critical ratio of laser energy density to scanning speed (E/v ≤ 2). At E/v = 1.7 (170 W, 300 mm/s, 0.08 mm spacing), the printed components achieve a relative density of 94.1% (vs. 96% for high-energy SLM) and microhardness of 488 kg/mm2, surpassing commercial cast tungsten (423 kg/mm2). Notably, nanoindentation tests demonstrate exceptional plasticity (indentation work: 0.204 kN·m/m2), comparable to single-crystal tungsten. This work not only establishes a low-cost pathway for refractory metal additive manufacturing but also provides a universal parameter framework (E/v threshold) to mitigate defects in high-melting-point alloys and improves the issues of element evaporation and combustion in additive manufacturing of refractory alloys.

Abstract Image

低温喷雾干粉和低能量SLM制备高性能钨组件:难熔金属增材制造的突破
钨的超高熔点和热应力诱发裂纹给增材制造带来了重大挑战。为了解决这一问题,我们提出了一种将低温喷雾干燥与优化热处理相结合的新策略,以制备球形度高(≥95%)、粒径分布窄(10-50 μm)、流动性好(28 s/50 g)的球形钨(W)粉末。与传统的等离子体球化粉末相比,我们的方法降低了生产成本,并能够在非常低的能量密度(200-600 J/mm3)下实现选择性激光熔化(SLM),远低于500-1500 J/mm3的典型范围。力学分析表明,定制粉末结构通过降低激光能量密度与扫描速度的临界比(E/v≤2)来抑制热收缩裂纹。在E/v = 1.7 (170 W, 300 mm/s, 0.08 mm间距)时,打印组件的相对密度为94.1%(高能SLM为96%),显微硬度为488 kg/mm2,超过了商业铸造钨(423 kg/mm2)。值得注意的是,纳米压痕测试显示出优异的塑性(压痕功:0.204 kN·m/m2),与单晶钨相当。本研究不仅为难熔金属增材制造建立了低成本的途径,而且为减轻高熔点合金的缺陷提供了通用参数框架(E/v阈值),并改善了难熔合金增材制造中元素蒸发和燃烧的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.10
自引率
0.00%
发文量
0
审稿时长
19 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信