Different Strokes for Different Croaks: Using an African Reed Frog Species Complex as a Model to Understand Idiosyncratic Population Requirements for Conservation Management
Christopher D. Barratt, Beryl A. Bwong, Lucinda P. Lawson, John V. Lyakurwa, Sebastian Steinfartz, Hendrik Müller, Robert Jehle, Simon P. Loader
{"title":"Different Strokes for Different Croaks: Using an African Reed Frog Species Complex as a Model to Understand Idiosyncratic Population Requirements for Conservation Management","authors":"Christopher D. Barratt, Beryl A. Bwong, Lucinda P. Lawson, John V. Lyakurwa, Sebastian Steinfartz, Hendrik Müller, Robert Jehle, Simon P. Loader","doi":"10.1111/eva.70164","DOIUrl":null,"url":null,"abstract":"<p>Biodiversity is under increasing pressure from environmental change, although the scope and severity of these impacts remain incompletely understood. For many species, a lack of information about population-specific responses to future environmental change hinders the development of effective conservation strategies. Here, we use an East African reed frog species complex as a model to explore spatial variation in vulnerability to future environmental changes. Our sampling across two threatened biodiversity hotspots spans the entire geographic range of <i>H. mitchelli and H. rubrovermiculatus</i> in Kenya, Tanzania, and Malawi. Using genome-wide (ddRAD-seq) data, we evaluate levels of neutral genetic diversity and local adaptations across sampling localities. We then integrate spatial approaches (genomic offset, modeled dispersal barriers, and Species Distribution Models) to predict how populations may respond differently to future environmental changes, such as climate warming and predicted land use changes. Based on our analyses, we characterize population structure and identify region-specific management needs that reflect genetic variation among populations and the uneven impacts of predicted change across the landscape. Peripheral populations are most vulnerable to future environmental changes due to (i) low levels of neutral genetic diversity (Malawi and Pare mountains in Tanzania), (ii) putative signals of local adaptation to wetter conditions with predicted disruptions to genotype–environment associations (i.e., high genomic offset, Kenya and Northern Tanzania), and (iii) the projected contraction of suitable habitat, which is a pervasive threat to the species complex in general. Populations in Northern, Central, and Southern Tanzania show the lowest vulnerability to environmental change and may serve as important reservoirs of genetic diversity for potential future genetic rescue initiatives. Our study highlights how populations across different parts of species ranges may be unevenly affected by future global changes and provides a framework to predict which conservation actions may help mitigate these effects.</p>","PeriodicalId":168,"journal":{"name":"Evolutionary Applications","volume":"18 10","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2025-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/eva.70164","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Evolutionary Applications","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/eva.70164","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"EVOLUTIONARY BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Biodiversity is under increasing pressure from environmental change, although the scope and severity of these impacts remain incompletely understood. For many species, a lack of information about population-specific responses to future environmental change hinders the development of effective conservation strategies. Here, we use an East African reed frog species complex as a model to explore spatial variation in vulnerability to future environmental changes. Our sampling across two threatened biodiversity hotspots spans the entire geographic range of H. mitchelli and H. rubrovermiculatus in Kenya, Tanzania, and Malawi. Using genome-wide (ddRAD-seq) data, we evaluate levels of neutral genetic diversity and local adaptations across sampling localities. We then integrate spatial approaches (genomic offset, modeled dispersal barriers, and Species Distribution Models) to predict how populations may respond differently to future environmental changes, such as climate warming and predicted land use changes. Based on our analyses, we characterize population structure and identify region-specific management needs that reflect genetic variation among populations and the uneven impacts of predicted change across the landscape. Peripheral populations are most vulnerable to future environmental changes due to (i) low levels of neutral genetic diversity (Malawi and Pare mountains in Tanzania), (ii) putative signals of local adaptation to wetter conditions with predicted disruptions to genotype–environment associations (i.e., high genomic offset, Kenya and Northern Tanzania), and (iii) the projected contraction of suitable habitat, which is a pervasive threat to the species complex in general. Populations in Northern, Central, and Southern Tanzania show the lowest vulnerability to environmental change and may serve as important reservoirs of genetic diversity for potential future genetic rescue initiatives. Our study highlights how populations across different parts of species ranges may be unevenly affected by future global changes and provides a framework to predict which conservation actions may help mitigate these effects.
期刊介绍:
Evolutionary Applications is a fully peer reviewed open access journal. It publishes papers that utilize concepts from evolutionary biology to address biological questions of health, social and economic relevance. Papers are expected to employ evolutionary concepts or methods to make contributions to areas such as (but not limited to): medicine, agriculture, forestry, exploitation and management (fisheries and wildlife), aquaculture, conservation biology, environmental sciences (including climate change and invasion biology), microbiology, and toxicology. All taxonomic groups are covered from microbes, fungi, plants and animals. In order to better serve the community, we also now strongly encourage submissions of papers making use of modern molecular and genetic methods (population and functional genomics, transcriptomics, proteomics, epigenetics, quantitative genetics, association and linkage mapping) to address important questions in any of these disciplines and in an applied evolutionary framework. Theoretical, empirical, synthesis or perspective papers are welcome.