On Picard-CR iterations involving weak perturbative contraction operators and application to reversible chemical reactions

IF 3.4 2区 数学 Q1 MATHEMATICS, APPLIED
Khairul Habib Alam , Aswini Dolai , Yumnam Rohen , Sunil Panday , Shaibal Mani
{"title":"On Picard-CR iterations involving weak perturbative contraction operators and application to reversible chemical reactions","authors":"Khairul Habib Alam ,&nbsp;Aswini Dolai ,&nbsp;Yumnam Rohen ,&nbsp;Sunil Panday ,&nbsp;Shaibal Mani","doi":"10.1016/j.amc.2025.129744","DOIUrl":null,"url":null,"abstract":"<div><div>We propose an efficient iterative method called Picard-CR for approximating fixed points under weak perturbative contraction conditions in uniformly convex hyperbolic metric spaces. Theoretical analysis establishes both weak and strong convergence, with performance validated against classical methods (CR, Picard-Noor, and Picard-SP) through numerical experiments. We extend our convergence results to non-expansive and contraction mappings, supported by MATLAB-based visualizations. The iterative scheme is shown to be stable and more efficient, with direct application to computing equilibrium concentrations in reversible chemical reactions. Our findings contribute not only to fixed point theory but also provide practical computational tools for chemical and engineering problems.</div></div>","PeriodicalId":55496,"journal":{"name":"Applied Mathematics and Computation","volume":"512 ","pages":"Article 129744"},"PeriodicalIF":3.4000,"publicationDate":"2025-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics and Computation","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0096300325004692","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

We propose an efficient iterative method called Picard-CR for approximating fixed points under weak perturbative contraction conditions in uniformly convex hyperbolic metric spaces. Theoretical analysis establishes both weak and strong convergence, with performance validated against classical methods (CR, Picard-Noor, and Picard-SP) through numerical experiments. We extend our convergence results to non-expansive and contraction mappings, supported by MATLAB-based visualizations. The iterative scheme is shown to be stable and more efficient, with direct application to computing equilibrium concentrations in reversible chemical reactions. Our findings contribute not only to fixed point theory but also provide practical computational tools for chemical and engineering problems.
涉及弱微扰收缩算子的Picard-CR迭代及其在可逆化学反应中的应用
提出了一种有效的迭代方法——Picard-CR,用于逼近一致凸双曲度量空间中弱微扰收缩条件下的不动点。理论分析建立了弱收敛性和强收敛性,并通过数值实验验证了经典方法(CR、Picard-Noor和Picard-SP)的性能。我们将我们的收敛结果扩展到非膨胀和收缩映射,由基于matlab的可视化支持。结果表明,该迭代格式稳定有效,可直接应用于可逆化学反应平衡浓度的计算。我们的发现不仅有助于不动点理论,而且为化学和工程问题提供了实用的计算工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.90
自引率
10.00%
发文量
755
审稿时长
36 days
期刊介绍: Applied Mathematics and Computation addresses work at the interface between applied mathematics, numerical computation, and applications of systems – oriented ideas to the physical, biological, social, and behavioral sciences, and emphasizes papers of a computational nature focusing on new algorithms, their analysis and numerical results. In addition to presenting research papers, Applied Mathematics and Computation publishes review articles and single–topics issues.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信