Prediction of Raman signatures, electronic structure, and ion transport mechanisms in Nb2C and Nb2CO2 MXenes for Li/Na-ion batteries: An Ab Initio study

IF 4.9 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Nishat Sultana , Abdullah A. Amin , Eric J. Payton , Woo Kyun Kim
{"title":"Prediction of Raman signatures, electronic structure, and ion transport mechanisms in Nb2C and Nb2CO2 MXenes for Li/Na-ion batteries: An Ab Initio study","authors":"Nishat Sultana ,&nbsp;Abdullah A. Amin ,&nbsp;Eric J. Payton ,&nbsp;Woo Kyun Kim","doi":"10.1016/j.jpcs.2025.113218","DOIUrl":null,"url":null,"abstract":"<div><div>We employ density functional theory (DFT) to examine the vibrational, electronic, and ion transport properties of Nb<sub>2</sub>C and Nb<sub>2</sub>CO<sub>2</sub> MXenes as potential anode materials for lithium-ion and sodium-ion batteries. For the first time, we simulate the Raman spectra of pristine and Li/Na-intercalated Nb<sub>2</sub>C, as well as Nb<sub>2</sub>CO<sub>2</sub>, to evaluate structural response and its correlation with charge transfer. The predicted Raman modes reproduce known experimental peaks in Nb<sub>2</sub>C, persistent upon intercalation. Raman peak positions remain unchanged with ion insertion indicating minimal structural distortion. We observed variations in peak intensities indicating modifications in polarizability due to charge transfer and altered electron phonon coupling.</div><div>Our analysis confirms that both MXenes retain metallic conductivity after intercalation, ensuring efficient electron transport. Adsorption energy calculations identify the T4 and H3 sites as favorable for Li/Na, with Nb<sub>2</sub>CO<sub>2</sub> exhibiting stronger binding due to surface oxygen terminations. Diffusion barrier analysis reveals enhanced ion mobility in Nb<sub>2</sub>C, particularly for Na ions, while Nb<sub>2</sub>CO<sub>2</sub> delivers higher open-circuit voltage and stronger ion retention.</div><div>This study demonstrates the utility of Raman spectroscopy, coupled with first-principles simulations, as a predictive tool for probing structural and electronic behavior in energy materials. Our findings position Nb<sub>2</sub>C for fast-charging applications and Nb<sub>2</sub>CO<sub>2</sub> for high-energy-density systems.</div></div>","PeriodicalId":16811,"journal":{"name":"Journal of Physics and Chemistry of Solids","volume":"209 ","pages":"Article 113218"},"PeriodicalIF":4.9000,"publicationDate":"2025-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics and Chemistry of Solids","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022369725006717","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

We employ density functional theory (DFT) to examine the vibrational, electronic, and ion transport properties of Nb2C and Nb2CO2 MXenes as potential anode materials for lithium-ion and sodium-ion batteries. For the first time, we simulate the Raman spectra of pristine and Li/Na-intercalated Nb2C, as well as Nb2CO2, to evaluate structural response and its correlation with charge transfer. The predicted Raman modes reproduce known experimental peaks in Nb2C, persistent upon intercalation. Raman peak positions remain unchanged with ion insertion indicating minimal structural distortion. We observed variations in peak intensities indicating modifications in polarizability due to charge transfer and altered electron phonon coupling.
Our analysis confirms that both MXenes retain metallic conductivity after intercalation, ensuring efficient electron transport. Adsorption energy calculations identify the T4 and H3 sites as favorable for Li/Na, with Nb2CO2 exhibiting stronger binding due to surface oxygen terminations. Diffusion barrier analysis reveals enhanced ion mobility in Nb2C, particularly for Na ions, while Nb2CO2 delivers higher open-circuit voltage and stronger ion retention.
This study demonstrates the utility of Raman spectroscopy, coupled with first-principles simulations, as a predictive tool for probing structural and electronic behavior in energy materials. Our findings position Nb2C for fast-charging applications and Nb2CO2 for high-energy-density systems.

Abstract Image

Li/ na离子电池用Nb2C和Nb2CO2 MXenes的拉曼特征、电子结构和离子输运机制预测:从头算研究
我们运用密度泛函理论(DFT)研究了Nb2C和Nb2CO2 MXenes作为锂离子和钠离子电池潜在负极材料的振动、电子和离子输运特性。我们首次模拟了原始和Li/ na插层Nb2C以及Nb2CO2的拉曼光谱,以评估结构响应及其与电荷转移的相关性。预测的拉曼模式再现了Nb2C中已知的实验峰,并在插入后持续存在。拉曼峰位置保持不变,离子插入表明最小的结构畸变。我们观察到峰强度的变化表明极化率的变化是由于电荷转移和电子声子耦合的改变。我们的分析证实,两种MXenes在插入后都保持了金属导电性,确保了有效的电子传递。吸附能计算表明,T4和H3位点对Li/Na有利,Nb2CO2由于表面氧末端表现出更强的结合。扩散势垒分析表明,Nb2C的离子迁移率提高,特别是Na离子,而Nb2CO2具有更高的开路电压和更强的离子保留力。这项研究展示了拉曼光谱的实用性,结合第一性原理模拟,作为探测能源材料结构和电子行为的预测工具。我们的研究结果将Nb2C定位为快速充电应用,Nb2CO2定位为高能量密度系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Physics and Chemistry of Solids
Journal of Physics and Chemistry of Solids 工程技术-化学综合
CiteScore
7.80
自引率
2.50%
发文量
605
审稿时长
40 days
期刊介绍: The Journal of Physics and Chemistry of Solids is a well-established international medium for publication of archival research in condensed matter and materials sciences. Areas of interest broadly include experimental and theoretical research on electronic, magnetic, spectroscopic and structural properties as well as the statistical mechanics and thermodynamics of materials. The focus is on gaining physical and chemical insight into the properties and potential applications of condensed matter systems. Within the broad scope of the journal, beyond regular contributions, the editors have identified submissions in the following areas of physics and chemistry of solids to be of special current interest to the journal: Low-dimensional systems Exotic states of quantum electron matter including topological phases Energy conversion and storage Interfaces, nanoparticles and catalysts.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信