{"title":"The reflection coefficient of a fractional reflector","authors":"Laurent Demanet , Olivier Lafitte","doi":"10.1016/j.jde.2025.113788","DOIUrl":null,"url":null,"abstract":"<div><div>This paper considers the question of characterizing the behavior of waves reflected by a fractional singularity of the wave speed profile, i.e., of the form<span><span><span><math><mi>c</mi><mo>(</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>)</mo><mo>=</mo><msub><mrow><mi>c</mi></mrow><mrow><mn>0</mn></mrow></msub><msup><mrow><mo>(</mo><mn>1</mn><mo>+</mo><msubsup><mrow><mo>(</mo><mfrac><mrow><msub><mrow><mi>x</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow><mrow><mi>ℓ</mi></mrow></mfrac><mo>)</mo></mrow><mrow><mo>+</mo></mrow><mrow><mi>α</mi></mrow></msubsup><mo>)</mo></mrow><mrow><mo>−</mo><mn>1</mn><mo>/</mo><mn>2</mn></mrow></msup><mo>,</mo></math></span></span></span> for <span><math><mi>α</mi><mo>></mo><mn>0</mn></math></span> not necessarily integer. We first focus on the case of one spatial dimension and a harmonic time dependence. We define the reflection coefficient <em>R</em> from a limiting absorption principle. We provide an exact formula for <em>R</em> in terms of the solution to a Volterra equation. We obtain the asymptotic limit of this coefficient in the large <span><math><mi>ℓ</mi><mi>ω</mi><mo>/</mo><msub><mrow><mi>c</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> regime as<span><span><span><math><mi>R</mi><mo>=</mo><mfrac><mrow><mi>Γ</mi><mo>(</mo><mi>α</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow><mrow><msup><mrow><mo>(</mo><mn>2</mn><mi>i</mi><mo>)</mo></mrow><mrow><mi>α</mi><mo>+</mo><mn>2</mn></mrow></msup></mrow></mfrac><msup><mrow><mo>(</mo><mfrac><mrow><msub><mrow><mi>c</mi></mrow><mrow><mn>0</mn></mrow></msub></mrow><mrow><mi>ℓ</mi><mi>ω</mi></mrow></mfrac><mo>)</mo></mrow><mrow><mi>α</mi></mrow></msup><mo>+</mo><mtext>lower order terms.</mtext></math></span></span></span> The amplitude is proportional to <span><math><msup><mrow><mi>ω</mi></mrow><mrow><mo>−</mo><mi>α</mi></mrow></msup></math></span>, and the phase rotation behavior is obtained from the <span><math><msup><mrow><mi>i</mi></mrow><mrow><mo>−</mo><mo>(</mo><mi>α</mi><mo>+</mo><mn>2</mn><mo>)</mo></mrow></msup></math></span> factor. The proof method does not rely on representing the solution by special functions, since <span><math><mi>α</mi><mo>></mo><mn>0</mn></math></span> is general.</div><div>In the multi-dimensional layered case, we obtain a similar result where the nondimensional variable <span><math><mi>ℓ</mi><mi>ω</mi><mo>/</mo><msub><mrow><mi>c</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> is modified to account for the angle of incidence. The asymptotic analysis now requires the waves to be non-glancing. The resulting reflection coefficient can now be interpreted as a Fourier multiplier of order −<em>α</em>.</div><div>In practice, the knowledge of the dependency of both the amplitude and the phase of <em>R</em> on <em>ω</em> and <em>α</em> might be able to inform the kind of signal processing needed to characterize the fractional nature of reflectors, for instance in geophysics.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"453 ","pages":"Article 113788"},"PeriodicalIF":2.3000,"publicationDate":"2025-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039625008150","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
This paper considers the question of characterizing the behavior of waves reflected by a fractional singularity of the wave speed profile, i.e., of the form for not necessarily integer. We first focus on the case of one spatial dimension and a harmonic time dependence. We define the reflection coefficient R from a limiting absorption principle. We provide an exact formula for R in terms of the solution to a Volterra equation. We obtain the asymptotic limit of this coefficient in the large regime as The amplitude is proportional to , and the phase rotation behavior is obtained from the factor. The proof method does not rely on representing the solution by special functions, since is general.
In the multi-dimensional layered case, we obtain a similar result where the nondimensional variable is modified to account for the angle of incidence. The asymptotic analysis now requires the waves to be non-glancing. The resulting reflection coefficient can now be interpreted as a Fourier multiplier of order −α.
In practice, the knowledge of the dependency of both the amplitude and the phase of R on ω and α might be able to inform the kind of signal processing needed to characterize the fractional nature of reflectors, for instance in geophysics.
期刊介绍:
The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools.
Research Areas Include:
• Mathematical control theory
• Ordinary differential equations
• Partial differential equations
• Stochastic differential equations
• Topological dynamics
• Related topics