Built-in potential engineering via C60 buffer layer for high-performance CsSnGeI3 QD/CsSnBr3 hybrid perovskite solar cells

IF 4.9 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Masood Mehrabian , Pourya Norouzzadeh , Rouhangiz Yahyabonyad , Asmet N. Azizova , Omid Akhavan
{"title":"Built-in potential engineering via C60 buffer layer for high-performance CsSnGeI3 QD/CsSnBr3 hybrid perovskite solar cells","authors":"Masood Mehrabian ,&nbsp;Pourya Norouzzadeh ,&nbsp;Rouhangiz Yahyabonyad ,&nbsp;Asmet N. Azizova ,&nbsp;Omid Akhavan","doi":"10.1016/j.jpcs.2025.113259","DOIUrl":null,"url":null,"abstract":"<div><div>In this study, we systematically investigated a dual-absorber solar-cell architecture under standard AM 1.5 (1-sun) illumination at 300 K using the SCAPS-1D simulation tool. The device configuration comprised an inorganic perovskite material, CsSnBr<sub>3</sub>, as the primary light-absorbing layer, followed by a secondary absorber layer composed of CsGeSnI<sub>3</sub> quantum dots (QDs). The investigation primarily focused on evaluating the influence of a fullerene (C<sub>60</sub>) interfacial buffer layer on the photovoltaic performance metrics of the device, including overall power conversion efficiency (PCE), fill factor (FF), short-circuit current density (J<sub>SC</sub>), and open-circuit voltage (V<sub>OC</sub>) within the FTO/TiO<sub>2</sub>/CsSnBr<sub>3</sub>/CsGeSnI<sub>3</sub> QD/P3HT/Ag device structure. Incorporation of the C<sub>60</sub> layer as an electron acceptor enhanced charge-carrier separation by inducing a favorable built-in electric field, which in turn facilitated more efficient charge extraction and transport and led to a marked improvement in power conversion efficiency (PCE). To further elucidate the role of the buffer layer, additional simulations were performed, capacitance-voltage (C–V) study, built-in electric field analyzing, carrier recombination and generation. An optimization study of the C<sub>60</sub> layer thickness showed that tuning this interfacial buffer to 300 nm yields a maximum power-conversion efficiency of 20.35 %, indicating the critical influence of layer thickness on device performance.</div></div>","PeriodicalId":16811,"journal":{"name":"Journal of Physics and Chemistry of Solids","volume":"209 ","pages":"Article 113259"},"PeriodicalIF":4.9000,"publicationDate":"2025-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics and Chemistry of Solids","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022369725007127","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, we systematically investigated a dual-absorber solar-cell architecture under standard AM 1.5 (1-sun) illumination at 300 K using the SCAPS-1D simulation tool. The device configuration comprised an inorganic perovskite material, CsSnBr3, as the primary light-absorbing layer, followed by a secondary absorber layer composed of CsGeSnI3 quantum dots (QDs). The investigation primarily focused on evaluating the influence of a fullerene (C60) interfacial buffer layer on the photovoltaic performance metrics of the device, including overall power conversion efficiency (PCE), fill factor (FF), short-circuit current density (JSC), and open-circuit voltage (VOC) within the FTO/TiO2/CsSnBr3/CsGeSnI3 QD/P3HT/Ag device structure. Incorporation of the C60 layer as an electron acceptor enhanced charge-carrier separation by inducing a favorable built-in electric field, which in turn facilitated more efficient charge extraction and transport and led to a marked improvement in power conversion efficiency (PCE). To further elucidate the role of the buffer layer, additional simulations were performed, capacitance-voltage (C–V) study, built-in electric field analyzing, carrier recombination and generation. An optimization study of the C60 layer thickness showed that tuning this interfacial buffer to 300 nm yields a maximum power-conversion efficiency of 20.35 %, indicating the critical influence of layer thickness on device performance.
基于C60缓冲层的高性能CsSnGeI3 QD/CsSnBr3混合钙钛矿太阳能电池内置电位工程
在这项研究中,我们使用SCAPS-1D模拟工具系统地研究了标准AM 1.5(1太阳)照明下300 K下的双吸收体太阳能电池结构。该器件结构由无机钙钛矿材料CsSnBr3作为主要吸光层,其次是由CsGeSnI3量子点(QDs)组成的二次吸收层。该研究主要集中于评估富勒烯(C60)界面缓冲层对器件的光伏性能指标的影响,包括FTO/TiO2/CsSnBr3/CsGeSnI3 QD/P3HT/Ag器件结构中的总功率转换效率(PCE)、填充因子(FF)、短路电流密度(JSC)和开路电压(VOC)。C60层作为电子受体的加入通过诱导有利的内置电场增强了电荷载流子分离,从而促进了更有效的电荷提取和传输,并显著提高了功率转换效率(PCE)。为了进一步阐明缓冲层的作用,进行了额外的仿真、电容电压(C-V)研究、内置电场分析、载流子重组和生成。对C60层厚度的优化研究表明,将该接口缓冲器调整到300 nm可产生20.35%的最大功率转换效率,这表明层厚度对器件性能的关键影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Physics and Chemistry of Solids
Journal of Physics and Chemistry of Solids 工程技术-化学综合
CiteScore
7.80
自引率
2.50%
发文量
605
审稿时长
40 days
期刊介绍: The Journal of Physics and Chemistry of Solids is a well-established international medium for publication of archival research in condensed matter and materials sciences. Areas of interest broadly include experimental and theoretical research on electronic, magnetic, spectroscopic and structural properties as well as the statistical mechanics and thermodynamics of materials. The focus is on gaining physical and chemical insight into the properties and potential applications of condensed matter systems. Within the broad scope of the journal, beyond regular contributions, the editors have identified submissions in the following areas of physics and chemistry of solids to be of special current interest to the journal: Low-dimensional systems Exotic states of quantum electron matter including topological phases Energy conversion and storage Interfaces, nanoparticles and catalysts.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信