A second-order time-accurate, linear fully decoupled unconditional energy stabilization finite element method for tumor growth model

IF 2.5 2区 数学 Q1 MATHEMATICS, APPLIED
Mingle Sun , Bo Wang , Guang-an Zou , Yuxing Zhang
{"title":"A second-order time-accurate, linear fully decoupled unconditional energy stabilization finite element method for tumor growth model","authors":"Mingle Sun ,&nbsp;Bo Wang ,&nbsp;Guang-an Zou ,&nbsp;Yuxing Zhang","doi":"10.1016/j.camwa.2025.09.028","DOIUrl":null,"url":null,"abstract":"<div><div>By using the <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> gradient flow method, we derive a phase-field model for tumor growth from the free energy. The scalar auxiliary variable (SAV) method is employed to handle the nonlinear energy potential. Based on the second-order backward differentiation formula (BDF2) and the finite element method, we construct an unconditionally stable, linear, and decoupled fully discrete numerical scheme. We rigorously prove the unconditional energy stability of the proposed scheme and the optimal <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>-norm error estimates for <em>ϕ</em> and <em>c</em>. Numerical examples are presented to validate the theoretical results and to demonstrate the effectiveness of the model and the scheme.</div></div>","PeriodicalId":55218,"journal":{"name":"Computers & Mathematics with Applications","volume":"201 ","pages":"Pages 35-52"},"PeriodicalIF":2.5000,"publicationDate":"2025-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Mathematics with Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0898122125004092","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

By using the L2 gradient flow method, we derive a phase-field model for tumor growth from the free energy. The scalar auxiliary variable (SAV) method is employed to handle the nonlinear energy potential. Based on the second-order backward differentiation formula (BDF2) and the finite element method, we construct an unconditionally stable, linear, and decoupled fully discrete numerical scheme. We rigorously prove the unconditional energy stability of the proposed scheme and the optimal L2-norm error estimates for ϕ and c. Numerical examples are presented to validate the theoretical results and to demonstrate the effectiveness of the model and the scheme.
肿瘤生长模型的二阶时间精确、线性完全解耦无条件能量稳定有限元方法
利用L2梯度流法,从自由能推导出肿瘤生长的相场模型。采用标量辅助变量法(SAV)处理非线性能量势。基于二阶后向微分公式(BDF2)和有限元法,构造了一个无条件稳定、线性解耦的全离散数值格式。我们严格地证明了所提出的方案的无条件能量稳定性和φ和c的最优l2 -范数误差估计。给出了数值例子来验证理论结果,并证明了模型和方案的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computers & Mathematics with Applications
Computers & Mathematics with Applications 工程技术-计算机:跨学科应用
CiteScore
5.10
自引率
10.30%
发文量
396
审稿时长
9.9 weeks
期刊介绍: Computers & Mathematics with Applications provides a medium of exchange for those engaged in fields contributing to building successful simulations for science and engineering using Partial Differential Equations (PDEs).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信