Theoretical investigations of mechanical, magnetic and thermoelectric properties of Zr2VX(X= Al, Ga, In) full Heusler alloys

IF 2.8 3区 物理与天体物理 Q2 PHYSICS, CONDENSED MATTER
Hind Alqurashi , Obaidallah A. Algethami , Eesha Andharia , Bothina Hamad , Ahmed Zakaria , K. Ayuel
{"title":"Theoretical investigations of mechanical, magnetic and thermoelectric properties of Zr2VX(X= Al, Ga, In) full Heusler alloys","authors":"Hind Alqurashi ,&nbsp;Obaidallah A. Algethami ,&nbsp;Eesha Andharia ,&nbsp;Bothina Hamad ,&nbsp;Ahmed Zakaria ,&nbsp;K. Ayuel","doi":"10.1016/j.physb.2025.417866","DOIUrl":null,"url":null,"abstract":"<div><div>Density-functional-theory calculations were carried out to elucidate the structural, magnetic, and thermoelectric properties of the full-Heusler compounds Zr<sub>2</sub>VX (<em>X</em> = Al, Ga, In). All three compounds adopt the cubic L2<sub>1</sub> structure (space group <em>Fm</em> <span><math><mrow><mover><mn>3</mn><mo>‾</mo></mover></mrow></math></span> m) and satisfy the Born–Huang criteria, with elastic moduli that place them in the ductile regime. Spin-polarized electronic-structure analysis predicts ferromagnetic ordering and Curie temperatures well above ambient, underscoring their promise for spintronic devices. Boltzmann-transport calculations (constant-relaxation-time approximation) further indicate competitive thermoelectric performance; in particular, Zr<sub>2</sub>VGa attains a room-temperature figure of merit <strong>ZT ≈ 2.4</strong>, markedly higher than values reported for most Heusler systems studied to date. The synergy of mechanical robustness, high-temperature ferromagnetism, and sizeable ZT highlights Zr<sub>2</sub>VX alloys as versatile candidates for multifunctional energy and spin-electronic applications.</div></div>","PeriodicalId":20116,"journal":{"name":"Physica B-condensed Matter","volume":"718 ","pages":"Article 417866"},"PeriodicalIF":2.8000,"publicationDate":"2025-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica B-condensed Matter","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921452625009834","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

Abstract

Density-functional-theory calculations were carried out to elucidate the structural, magnetic, and thermoelectric properties of the full-Heusler compounds Zr2VX (X = Al, Ga, In). All three compounds adopt the cubic L21 structure (space group Fm 3 m) and satisfy the Born–Huang criteria, with elastic moduli that place them in the ductile regime. Spin-polarized electronic-structure analysis predicts ferromagnetic ordering and Curie temperatures well above ambient, underscoring their promise for spintronic devices. Boltzmann-transport calculations (constant-relaxation-time approximation) further indicate competitive thermoelectric performance; in particular, Zr2VGa attains a room-temperature figure of merit ZT ≈ 2.4, markedly higher than values reported for most Heusler systems studied to date. The synergy of mechanical robustness, high-temperature ferromagnetism, and sizeable ZT highlights Zr2VX alloys as versatile candidates for multifunctional energy and spin-electronic applications.
Zr2VX(X= Al, Ga, In)全Heusler合金力学、磁性和热电性能的理论研究
利用密度泛函理论计算阐明了全heusler化合物Zr2VX (X = Al, Ga, In)的结构、磁性和热电性质。所有三种化合物都采用立方L21结构(空间群fm3 - m),并满足Born-Huang准则,具有弹性模量,使它们处于韧性状态。自旋极化电子结构分析预测铁磁有序和居里温度远高于环境温度,强调了自旋电子器件的前景。玻尔兹曼输运计算(常数松弛时间近似)进一步表明竞争性热电性能;特别是,Zr2VGa在室温下的性能值ZT≈2.4,明显高于迄今为止研究的大多数Heusler系统的报告值。机械稳健性,高温铁磁性和大ZT的协同作用突出了Zr2VX合金作为多功能能量和自旋电子应用的多功能候选者。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physica B-condensed Matter
Physica B-condensed Matter 物理-物理:凝聚态物理
CiteScore
4.90
自引率
7.10%
发文量
703
审稿时长
44 days
期刊介绍: Physica B: Condensed Matter comprises all condensed matter and material physics that involve theoretical, computational and experimental work. Papers should contain further developments and a proper discussion on the physics of experimental or theoretical results in one of the following areas: -Magnetism -Materials physics -Nanostructures and nanomaterials -Optics and optical materials -Quantum materials -Semiconductors -Strongly correlated systems -Superconductivity -Surfaces and interfaces
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信