Sihyun Kim , Hongdeok Kim , Junho Oh , Joonmyung Choi
{"title":"Chirality-dependent interfacial energy dissipation in graphene-reinforced polymer nanocomposites: A molecular dynamics study","authors":"Sihyun Kim , Hongdeok Kim , Junho Oh , Joonmyung Choi","doi":"10.1016/j.surfin.2025.107763","DOIUrl":null,"url":null,"abstract":"<div><div>Methods for controlling the macroscopic mechanical behavior of polymers through graphene insertion are now being refined to utilize the inherent chirality of graphene. In this study, we computationally investigated the variation in the damping capacity with respect to graphene chirality and the relative vibrational load direction in epoxy/graphene nanocomposites at the molecular scale. All-atom molecular dynamics simulations showed that the nanocomposites exhibited improved energy dissipation when subjected to out-of-plane oscillatory shear strain along the armchair graphene compared to that under shear strain along the zigzag graphene. In particular, the anisotropic behavior governed the interfacial friction and associated slip properties of the polymer adjacent to graphene. Due to its high elastic modulus, armchair graphene facilitated the slippage of polymer components by suppressing out-of-plane wrinkle formation and structural interlocking at the interface. Owing to the hexagonal pattern formed by the graphene units, the surface energy landscape showed higher variation in the armchair direction. This forces the adjacent polymers to bypass the high-energy points on the potential energy surface, thus elongating the displacement trajectories. By contrast, the zigzag orientation maintains good interfacial bonding with the polymer under an external load owing to its high flexibility and low surface-energy variation. These findings provide molecular-level insights into the chirality-induced anisotropy in vibration damping and highlight a novel design strategy for the optimization of the dynamic mechanical performance of graphene-reinforced nanocomposites.</div></div>","PeriodicalId":22081,"journal":{"name":"Surfaces and Interfaces","volume":"75 ","pages":"Article 107763"},"PeriodicalIF":6.3000,"publicationDate":"2025-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Surfaces and Interfaces","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468023025020152","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Methods for controlling the macroscopic mechanical behavior of polymers through graphene insertion are now being refined to utilize the inherent chirality of graphene. In this study, we computationally investigated the variation in the damping capacity with respect to graphene chirality and the relative vibrational load direction in epoxy/graphene nanocomposites at the molecular scale. All-atom molecular dynamics simulations showed that the nanocomposites exhibited improved energy dissipation when subjected to out-of-plane oscillatory shear strain along the armchair graphene compared to that under shear strain along the zigzag graphene. In particular, the anisotropic behavior governed the interfacial friction and associated slip properties of the polymer adjacent to graphene. Due to its high elastic modulus, armchair graphene facilitated the slippage of polymer components by suppressing out-of-plane wrinkle formation and structural interlocking at the interface. Owing to the hexagonal pattern formed by the graphene units, the surface energy landscape showed higher variation in the armchair direction. This forces the adjacent polymers to bypass the high-energy points on the potential energy surface, thus elongating the displacement trajectories. By contrast, the zigzag orientation maintains good interfacial bonding with the polymer under an external load owing to its high flexibility and low surface-energy variation. These findings provide molecular-level insights into the chirality-induced anisotropy in vibration damping and highlight a novel design strategy for the optimization of the dynamic mechanical performance of graphene-reinforced nanocomposites.
期刊介绍:
The aim of the journal is to provide a respectful outlet for ''sound science'' papers in all research areas on surfaces and interfaces. We define sound science papers as papers that describe new and well-executed research, but that do not necessarily provide brand new insights or are merely a description of research results.
Surfaces and Interfaces publishes research papers in all fields of surface science which may not always find the right home on first submission to our Elsevier sister journals (Applied Surface, Surface and Coatings Technology, Thin Solid Films)