A martingale approach to noncommutative stochastic calculus

IF 1.6 2区 数学 Q1 MATHEMATICS
David A. Jekel , Todd A. Kemp , Evangelos A. Nikitopoulos
{"title":"A martingale approach to noncommutative stochastic calculus","authors":"David A. Jekel ,&nbsp;Todd A. Kemp ,&nbsp;Evangelos A. Nikitopoulos","doi":"10.1016/j.jfa.2025.111200","DOIUrl":null,"url":null,"abstract":"<div><div>We present a new approach to noncommutative stochastic calculus that is, like the classical theory, based primarily on the martingale property. Using this approach, we introduce a general theory of stochastic integration and quadratic (co)variation for a certain class of noncommutative processes, analogous to semimartingales, that includes both the <em>q</em>-Brownian motions and classical matrix-valued Brownian motions. As applications, we obtain Burkholder–Davis–Gundy inequalities (with <span><math><mi>p</mi><mo>≥</mo><mn>2</mn></math></span>) for continuous-time noncommutative martingales and a noncommutative Itô's formula for “adapted <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> maps,” including trace ⁎-polynomial maps and operator functions associated to the noncommutative <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> scalar functions <span><math><mi>R</mi><mo>→</mo><mi>C</mi></math></span> introduced by Nikitopoulos, as well as the more general multivariate tracial noncommutative <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> functions introduced by Jekel, Li, and Shlyakhtenko.</div></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":"290 2","pages":"Article 111200"},"PeriodicalIF":1.6000,"publicationDate":"2025-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022123625003829","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We present a new approach to noncommutative stochastic calculus that is, like the classical theory, based primarily on the martingale property. Using this approach, we introduce a general theory of stochastic integration and quadratic (co)variation for a certain class of noncommutative processes, analogous to semimartingales, that includes both the q-Brownian motions and classical matrix-valued Brownian motions. As applications, we obtain Burkholder–Davis–Gundy inequalities (with p2) for continuous-time noncommutative martingales and a noncommutative Itô's formula for “adapted C2 maps,” including trace ⁎-polynomial maps and operator functions associated to the noncommutative C2 scalar functions RC introduced by Nikitopoulos, as well as the more general multivariate tracial noncommutative C2 functions introduced by Jekel, Li, and Shlyakhtenko.
非交换随机微积分的鞅方法
我们提出了一种非交换随机微积分的新方法,它像经典理论一样,主要基于鞅性质。利用这种方法,我们引入了一类类似半鞅的非交换过程的随机积分和二次变分的一般理论,其中包括q-布朗运动和经典的矩阵值布朗运动。作为应用,我们得到了连续时间非交换鞅的Burkholder-Davis-Gundy不等式(p≥2)和“自适应C2映射”的非交换Itô公式,其中包括由Nikitopoulos引入的非交换C2标量函数R→C相关的迹函数和算子函数,以及由Jekel、Li和Shlyakhtenko引入的更一般的多元迹非交换C2函数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.20
自引率
5.90%
发文量
271
审稿时长
7.5 months
期刊介绍: The Journal of Functional Analysis presents original research papers in all scientific disciplines in which modern functional analysis plays a basic role. Articles by scientists in a variety of interdisciplinary areas are published. Research Areas Include: • Significant applications of functional analysis, including those to other areas of mathematics • New developments in functional analysis • Contributions to important problems in and challenges to functional analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信