Temporal error estimates of the BDF2 numerical scheme with variable time steps for the square phase-field crystal model

IF 2.6 2区 数学 Q1 MATHEMATICS, APPLIED
Danxia Wang , Jiongzhuo Lv , Jun Zhang , Hongen Jia
{"title":"Temporal error estimates of the BDF2 numerical scheme with variable time steps for the square phase-field crystal model","authors":"Danxia Wang ,&nbsp;Jiongzhuo Lv ,&nbsp;Jun Zhang ,&nbsp;Hongen Jia","doi":"10.1016/j.cam.2025.117093","DOIUrl":null,"url":null,"abstract":"<div><div>In this study, we propose a temporally adaptive semi-discrete computational approach for the square phase-field crystal (SPFC) model, which adopts the variable-time-step BDF2 (VBDF2) temporal discretization. By overcoming the difficulties caused by its high-order non-linear term <span><math><mrow><mi>Δ</mi><mo>∇</mo><mi>⋅</mi><mrow><mo>(</mo><msup><mrow><mrow><mo>|</mo><mo>∇</mo><mi>u</mi><mo>|</mo></mrow></mrow><mrow><mn>2</mn></mrow></msup><mo>∇</mo><mi>u</mi><mo>)</mo></mrow></mrow></math></span> and complex variable-time-step coefficients, we rigorously prove the unconditional energy stability and convergence results of this scheme. Moreover, we design an adaptive time-stepping algorithm to improve the computational efficiency while guaranteeing the precision. Finally, some numerical simulations validate the previous theoretical analysis.</div></div>","PeriodicalId":50226,"journal":{"name":"Journal of Computational and Applied Mathematics","volume":"476 ","pages":"Article 117093"},"PeriodicalIF":2.6000,"publicationDate":"2025-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational and Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0377042725006077","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, we propose a temporally adaptive semi-discrete computational approach for the square phase-field crystal (SPFC) model, which adopts the variable-time-step BDF2 (VBDF2) temporal discretization. By overcoming the difficulties caused by its high-order non-linear term Δ(|u|2u) and complex variable-time-step coefficients, we rigorously prove the unconditional energy stability and convergence results of this scheme. Moreover, we design an adaptive time-stepping algorithm to improve the computational efficiency while guaranteeing the precision. Finally, some numerical simulations validate the previous theoretical analysis.
方相场晶体模型变时间步长BDF2数值格式的时间误差估计
在这项研究中,我们提出了一种采用变时间步长BDF2 (VBDF2)时间离散化的方形相场晶体(SPFC)模型的时间自适应半离散计算方法。克服了其高阶非线性项Δ∇⋅(|∇u|2∇u)和复杂变时步系数带来的困难,严格证明了该方案的无条件能量稳定性和收敛结果。设计了自适应时步算法,在保证精度的同时提高了计算效率。最后,通过数值模拟验证了理论分析的正确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.40
自引率
4.20%
发文量
437
审稿时长
3.0 months
期刊介绍: The Journal of Computational and Applied Mathematics publishes original papers of high scientific value in all areas of computational and applied mathematics. The main interest of the Journal is in papers that describe and analyze new computational techniques for solving scientific or engineering problems. Also the improved analysis, including the effectiveness and applicability, of existing methods and algorithms is of importance. The computational efficiency (e.g. the convergence, stability, accuracy, ...) should be proved and illustrated by nontrivial numerical examples. Papers describing only variants of existing methods, without adding significant new computational properties are not of interest. The audience consists of: applied mathematicians, numerical analysts, computational scientists and engineers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信