General inertial proximal stochastic mirror descent algorithm beyond Lipschitz smoothness assumption

IF 2.6 2区 数学 Q1 MATHEMATICS, APPLIED
Shuang Wang , Xiaomei Dong , Xue Gao
{"title":"General inertial proximal stochastic mirror descent algorithm beyond Lipschitz smoothness assumption","authors":"Shuang Wang ,&nbsp;Xiaomei Dong ,&nbsp;Xue Gao","doi":"10.1016/j.cam.2025.117108","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, minimizing the sum of an average of finite proper closed nonconvex functions and a proper lower semicontinuous convex function over a closed convex set, is considered. We propose the general inertial proximal stochastic mirror descent (IPSMD for short) algorithm framework, which not only introduces the more general inertial technique and the variance reduced gradient estimator, but also circumvents the restrictive condition of Lipschitz smoothness by using Legendre function. In theory, we establish that the sequence generated by IPSMD algorithm globally converges to the critical point, under the condition that the objective function is semialgebraic. Besides the theoretical improvement in the convergence analysis, there are also possible computational advantages which provide an interesting option for practical problems.</div></div>","PeriodicalId":50226,"journal":{"name":"Journal of Computational and Applied Mathematics","volume":"476 ","pages":"Article 117108"},"PeriodicalIF":2.6000,"publicationDate":"2025-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational and Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0377042725006223","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, minimizing the sum of an average of finite proper closed nonconvex functions and a proper lower semicontinuous convex function over a closed convex set, is considered. We propose the general inertial proximal stochastic mirror descent (IPSMD for short) algorithm framework, which not only introduces the more general inertial technique and the variance reduced gradient estimator, but also circumvents the restrictive condition of Lipschitz smoothness by using Legendre function. In theory, we establish that the sequence generated by IPSMD algorithm globally converges to the critical point, under the condition that the objective function is semialgebraic. Besides the theoretical improvement in the convergence analysis, there are also possible computational advantages which provide an interesting option for practical problems.
超越Lipschitz平滑假设的一般惯性近端随机镜像下降算法
研究了有限个固有闭非凸函数与固有下半连续凸函数在闭凸集上的平均值和的最小化问题。本文提出了广义惯性近端随机镜像下降(IPSMD)算法框架,该框架不仅引入了更一般的惯性技术和方差减少梯度估计,而且利用Legendre函数绕过了Lipschitz平滑的限制条件。从理论上证明了在目标函数为半代数的条件下,IPSMD算法生成的序列全局收敛于临界点。除了收敛分析在理论上的改进外,还有可能在计算上的优势,为实际问题提供了一个有趣的选择。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.40
自引率
4.20%
发文量
437
审稿时长
3.0 months
期刊介绍: The Journal of Computational and Applied Mathematics publishes original papers of high scientific value in all areas of computational and applied mathematics. The main interest of the Journal is in papers that describe and analyze new computational techniques for solving scientific or engineering problems. Also the improved analysis, including the effectiveness and applicability, of existing methods and algorithms is of importance. The computational efficiency (e.g. the convergence, stability, accuracy, ...) should be proved and illustrated by nontrivial numerical examples. Papers describing only variants of existing methods, without adding significant new computational properties are not of interest. The audience consists of: applied mathematicians, numerical analysts, computational scientists and engineers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信