On the stability of IMEX BDF methods for DDEs and PDDEs

IF 2.6 2区 数学 Q1 MATHEMATICS, APPLIED
Ana Tercero-Báez , Jesús Martín-Vaquero
{"title":"On the stability of IMEX BDF methods for DDEs and PDDEs","authors":"Ana Tercero-Báez ,&nbsp;Jesús Martín-Vaquero","doi":"10.1016/j.cam.2025.117044","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, the stability of IMEX-BDF methods for delay differential equations (DDEs) is studied based on the test equation <span><math><mrow><msup><mrow><mi>y</mi></mrow><mrow><mo>′</mo></mrow></msup><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mo>=</mo><mo>−</mo><mi>A</mi><mi>y</mi><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mo>+</mo><mi>B</mi><mi>y</mi><mrow><mo>(</mo><mi>t</mi><mo>−</mo><mi>τ</mi><mo>)</mo></mrow></mrow></math></span>, where <span><math><mi>τ</mi></math></span> is a constant delay, <span><math><mi>A</mi></math></span> diagonalizes in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mo>+</mo></mrow></msup></math></span>, but <span><math><mi>B</mi></math></span> might be any matrix. First, it is analyzed the case where both matrices diagonalize simultaneously, and sufficient conditions to obtain linear stability are proved. However, the paper focuses on the case where the matrices <span><math><mi>A</mi></math></span> and <span><math><mi>B</mi></math></span> are not simultaneously diagonalizable. The concept of field of values, denoted by <span><math><mrow><mi>F</mi><mrow><mo>(</mo><mi>⋅</mi><mo>)</mo></mrow></mrow></math></span>, is used to prove a sufficient condition for unconditional stability of these methods: if <span><math><mi>A</mi></math></span> is Hermitian, IMEX-BDF2 is unconditionally stable whenever <span><math><mrow><mi>F</mi><mrow><mo>(</mo><msup><mrow><mi>A</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup><mi>B</mi><mo>)</mo></mrow></mrow></math></span> is contained in the disk centered at 0 and radius <span><math><mfrac><mrow><mn>1</mn></mrow><mrow><mn>3</mn></mrow></mfrac></math></span>, <span><math><mrow><mi>D</mi><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>3</mn></mrow></mfrac><mo>)</mo></mrow></mrow></math></span>, while IMEX-BDF3 is unconditionally stable whenever <span><math><mrow><mi>F</mi><mrow><mo>(</mo><msup><mrow><mi>A</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup><mi>B</mi><mo>)</mo></mrow><mo>⊆</mo><mi>D</mi><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>7</mn></mrow></mfrac><mo>)</mo></mrow></mrow></math></span>. Furthermore, sufficient conditions are derived to ensure stability, but according to the step size as a function of the radius of the disk containing <span><math><mrow><mi>F</mi><mrow><mo>(</mo><msup><mrow><mi>A</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup><mi>B</mi><mo>)</mo></mrow></mrow></math></span>. The approach developed herein is illustrated through several examples in which the discussed theory is applied not only to DDEs, but also to parabolic problems given by partial delay differential equations (PDDEs) with a diffusion term.</div></div>","PeriodicalId":50226,"journal":{"name":"Journal of Computational and Applied Mathematics","volume":"476 ","pages":"Article 117044"},"PeriodicalIF":2.6000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational and Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0377042725005588","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, the stability of IMEX-BDF methods for delay differential equations (DDEs) is studied based on the test equation y(t)=Ay(t)+By(tτ), where τ is a constant delay, A diagonalizes in R+, but B might be any matrix. First, it is analyzed the case where both matrices diagonalize simultaneously, and sufficient conditions to obtain linear stability are proved. However, the paper focuses on the case where the matrices A and B are not simultaneously diagonalizable. The concept of field of values, denoted by F(), is used to prove a sufficient condition for unconditional stability of these methods: if A is Hermitian, IMEX-BDF2 is unconditionally stable whenever F(A1B) is contained in the disk centered at 0 and radius 13, D(0,13), while IMEX-BDF3 is unconditionally stable whenever F(A1B)D(0,17). Furthermore, sufficient conditions are derived to ensure stability, but according to the step size as a function of the radius of the disk containing F(A1B). The approach developed herein is illustrated through several examples in which the discussed theory is applied not only to DDEs, but also to parabolic problems given by partial delay differential equations (PDDEs) with a diffusion term.
IMEX BDF方法对DDEs和PDDEs的稳定性研究
本文基于检验方程y ' (t)= - Ay(t)+By(t−τ),研究了延迟微分方程(DDEs)的IMEX-BDF方法的稳定性,其中τ是一个常数延迟,a在R+中对角化,而B可以是任何矩阵。首先,分析了两个矩阵同时对角化的情况,并证明了获得线性稳定性的充分条件。然而,本文主要讨论了矩阵A和B不能同时对角化的情况。利用F(⋅)的值域概念证明了这些方法无条件稳定的一个充分条件:如果a是埃尔米数,则每当F(a−1B)在圆心为0、半径为13,d(0,13)的圆盘中时,imex - bdff2都是无条件稳定的,而每当F(a−1B)≥0,17时,IMEX-BDF3都是无条件稳定的。进一步,导出了保证稳定性的充分条件,但根据步长作为包含F(a−1B)的圆盘半径的函数。通过几个例子说明了本文提出的方法,其中所讨论的理论不仅适用于微分方程,而且适用于由带扩散项的偏延迟微分方程给出的抛物问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.40
自引率
4.20%
发文量
437
审稿时长
3.0 months
期刊介绍: The Journal of Computational and Applied Mathematics publishes original papers of high scientific value in all areas of computational and applied mathematics. The main interest of the Journal is in papers that describe and analyze new computational techniques for solving scientific or engineering problems. Also the improved analysis, including the effectiveness and applicability, of existing methods and algorithms is of importance. The computational efficiency (e.g. the convergence, stability, accuracy, ...) should be proved and illustrated by nontrivial numerical examples. Papers describing only variants of existing methods, without adding significant new computational properties are not of interest. The audience consists of: applied mathematicians, numerical analysts, computational scientists and engineers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信