{"title":"Enhanced microstructural analysis of black cotton soil stabilized through rice husk ash integration","authors":"Ankur Abhishek , Anasua GuhaRay , Toshiro Hata","doi":"10.1016/j.sandf.2025.101698","DOIUrl":null,"url":null,"abstract":"<div><div>Black cotton soil (BCS) poses significant complexities in geotechnical applications due to its swelling and shrinkage behavior. It causes significant economic losses globally due to reconstruction and rehabilitation efforts. Reliable soil reinforcement techniques are, therefore, essential to mitigate the deleterious effects of expansive BCS and to ensure the long-term stability of the structures built upon them. The present study explores the application of rice husk ash (RHA) to BCS using nitrogen (N<sub>2</sub>) gas adsorption techniques such as Brunauer–Emmett–Teller (BET), Langmuir, and adsorption isotherm analyses. These techniques are based on the principle that N<sub>2</sub> gas is adsorbed onto the reactive surface sites. The surface of BCS is considered reactive due to its high clay content and the presence of montmorillonite. With the addition of RHA, pozzolanic reactions progress, leading to the development of cementitious phases such as calcium silicate hydrate (C-S-H), which gradually fill these reactive surface sites, leading to a decrease in the material’s gas adsorption capacity. This reduction in N<sub>2</sub> gas adsorption provides a measurable indication of pozzolanic activity, allowing for a more detailed microstructural assessment of stabilized soil systems. A sharp reduction in N<sub>2</sub> gas adsorption was observed in BET, Langmuir, and adsorption isotherm analyses at 6 % RHA content, conducted on 28-day cured Unconfined compressive strength (UCS)-tested samples. BET results showed a reduction in adsorption from 0.0635 mg/g for untreated BCS to 0.0385 mg/g at 6 % RHA concentration. This 6 % RHA content also corresponds with peak mechanical performance observed in UCS, California bearing ratio (CBR), indirect tensile strength (ITS), and cone penetration test (CPT), highlighting a strong correlation between microstructural improvement and engineering behavior. The UCS of untreated BCS (183 kPa) increased to a maximum of 819 kPa after 7 days and 1370 kPa after 28 days of curing, confirming 6 % RHA as the optimum dosage.</div></div>","PeriodicalId":21857,"journal":{"name":"Soils and Foundations","volume":"65 6","pages":"Article 101698"},"PeriodicalIF":3.3000,"publicationDate":"2025-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soils and Foundations","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0038080625001325","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Black cotton soil (BCS) poses significant complexities in geotechnical applications due to its swelling and shrinkage behavior. It causes significant economic losses globally due to reconstruction and rehabilitation efforts. Reliable soil reinforcement techniques are, therefore, essential to mitigate the deleterious effects of expansive BCS and to ensure the long-term stability of the structures built upon them. The present study explores the application of rice husk ash (RHA) to BCS using nitrogen (N2) gas adsorption techniques such as Brunauer–Emmett–Teller (BET), Langmuir, and adsorption isotherm analyses. These techniques are based on the principle that N2 gas is adsorbed onto the reactive surface sites. The surface of BCS is considered reactive due to its high clay content and the presence of montmorillonite. With the addition of RHA, pozzolanic reactions progress, leading to the development of cementitious phases such as calcium silicate hydrate (C-S-H), which gradually fill these reactive surface sites, leading to a decrease in the material’s gas adsorption capacity. This reduction in N2 gas adsorption provides a measurable indication of pozzolanic activity, allowing for a more detailed microstructural assessment of stabilized soil systems. A sharp reduction in N2 gas adsorption was observed in BET, Langmuir, and adsorption isotherm analyses at 6 % RHA content, conducted on 28-day cured Unconfined compressive strength (UCS)-tested samples. BET results showed a reduction in adsorption from 0.0635 mg/g for untreated BCS to 0.0385 mg/g at 6 % RHA concentration. This 6 % RHA content also corresponds with peak mechanical performance observed in UCS, California bearing ratio (CBR), indirect tensile strength (ITS), and cone penetration test (CPT), highlighting a strong correlation between microstructural improvement and engineering behavior. The UCS of untreated BCS (183 kPa) increased to a maximum of 819 kPa after 7 days and 1370 kPa after 28 days of curing, confirming 6 % RHA as the optimum dosage.
期刊介绍:
Soils and Foundations is one of the leading journals in the field of soil mechanics and geotechnical engineering. It is the official journal of the Japanese Geotechnical Society (JGS)., The journal publishes a variety of original research paper, technical reports, technical notes, as well as the state-of-the-art reports upon invitation by the Editor, in the fields of soil and rock mechanics, geotechnical engineering, and environmental geotechnics. Since the publication of Volume 1, No.1 issue in June 1960, Soils and Foundations will celebrate the 60th anniversary in the year of 2020.
Soils and Foundations welcomes theoretical as well as practical work associated with the aforementioned field(s). Case studies that describe the original and interdisciplinary work applicable to geotechnical engineering are particularly encouraged. Discussions to each of the published articles are also welcomed in order to provide an avenue in which opinions of peers may be fed back or exchanged. In providing latest expertise on a specific topic, one issue out of six per year on average was allocated to include selected papers from the International Symposia which were held in Japan as well as overseas.