Developing safety performance functions incorporating pavement roughness using Poisson regression and Machine learning models on Jordan’s Desert Highway

IF 3.8 Q2 TRANSPORTATION
Hazem Al-Mahamid , Diana Al-Nabulsi , Adam Torok
{"title":"Developing safety performance functions incorporating pavement roughness using Poisson regression and Machine learning models on Jordan’s Desert Highway","authors":"Hazem Al-Mahamid ,&nbsp;Diana Al-Nabulsi ,&nbsp;Adam Torok","doi":"10.1016/j.trip.2025.101659","DOIUrl":null,"url":null,"abstract":"<div><div>This study presents a high-resolution, hybrid model for forecasting crash frequency along a critical segment of Jordan’s Desert Highway, leveraging classical statistical inference and cutting-edge machine learning algorithms. Utilising a multi-stage approach encompassing rigorous data preprocessing, feature engineering, and multicollinearity diagnostics, the analysis integrates Poisson regression, Random Forest, XGBoost, and Support Vector Regression (SVR) to model the intricate relationships between crash occurrences and key covariates, including traffic volume (AADT), pavement roughness (IRI), vehicle speed, and driver age. Model performance was comprehensively evaluated using k-fold cross-validation and multiple diagnostic metrics (R<sup>2</sup>, RMSE, MAE, MAPE), with SVR yielding the most accurate predictions (R<sup>2</sup> = 0.983), substantially surpassing the Poisson baseline. Residual analyses confirmed the minimised bias and variance in machine learning estimators. Feature importance assessments using SHAP further underscored the dominant influence of AADT and IRI on crash likelihood. The findings establish the empirical superiority of non-parametric machine learning models in capturing non-linear, context-sensitive crash dynamics and advocate their deployment in contemporary traffic safety analysis. The study also emphasises the strategic value of granular, high-fidelity data and recommends incorporating spatiotemporal modelling and explainable artificial intelligence (XAI) to improve interpretability, generalizability, and real-time applicability in infrastructure risk management.</div></div>","PeriodicalId":36621,"journal":{"name":"Transportation Research Interdisciplinary Perspectives","volume":"34 ","pages":"Article 101659"},"PeriodicalIF":3.8000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transportation Research Interdisciplinary Perspectives","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590198225003380","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"TRANSPORTATION","Score":null,"Total":0}
引用次数: 0

Abstract

This study presents a high-resolution, hybrid model for forecasting crash frequency along a critical segment of Jordan’s Desert Highway, leveraging classical statistical inference and cutting-edge machine learning algorithms. Utilising a multi-stage approach encompassing rigorous data preprocessing, feature engineering, and multicollinearity diagnostics, the analysis integrates Poisson regression, Random Forest, XGBoost, and Support Vector Regression (SVR) to model the intricate relationships between crash occurrences and key covariates, including traffic volume (AADT), pavement roughness (IRI), vehicle speed, and driver age. Model performance was comprehensively evaluated using k-fold cross-validation and multiple diagnostic metrics (R2, RMSE, MAE, MAPE), with SVR yielding the most accurate predictions (R2 = 0.983), substantially surpassing the Poisson baseline. Residual analyses confirmed the minimised bias and variance in machine learning estimators. Feature importance assessments using SHAP further underscored the dominant influence of AADT and IRI on crash likelihood. The findings establish the empirical superiority of non-parametric machine learning models in capturing non-linear, context-sensitive crash dynamics and advocate their deployment in contemporary traffic safety analysis. The study also emphasises the strategic value of granular, high-fidelity data and recommends incorporating spatiotemporal modelling and explainable artificial intelligence (XAI) to improve interpretability, generalizability, and real-time applicability in infrastructure risk management.
在约旦沙漠公路上使用泊松回归和机器学习模型开发包含路面粗糙度的安全性能函数
这项研究提出了一个高分辨率的混合模型,用于预测约旦沙漠高速公路关键路段的碰撞频率,利用经典的统计推断和尖端的机器学习算法。利用多阶段方法,包括严格的数据预处理、特征工程和多重共线性诊断,该分析集成了泊松回归、随机森林、XGBoost和支持向量回归(SVR),以模拟碰撞发生与关键协变量(包括交通量(AADT)、路面粗糙度(IRI)、车速和驾驶员年龄)之间的复杂关系。使用k-fold交叉验证和多种诊断指标(R2、RMSE、MAE、MAPE)对模型性能进行综合评估,其中SVR给出了最准确的预测(R2 = 0.983),大大超过了泊松基线。残差分析证实了机器学习估计器中的最小偏差和方差。使用SHAP的特征重要性评估进一步强调了AADT和IRI对碰撞可能性的主导影响。研究结果确立了非参数机器学习模型在捕捉非线性、上下文敏感的碰撞动力学方面的经验优势,并倡导将其应用于当代交通安全分析。该研究还强调了粒度、高保真度数据的战略价值,并建议将时空建模和可解释人工智能(XAI)结合起来,以提高基础设施风险管理的可解释性、通用性和实时性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Transportation Research Interdisciplinary Perspectives
Transportation Research Interdisciplinary Perspectives Engineering-Automotive Engineering
CiteScore
12.90
自引率
0.00%
发文量
185
审稿时长
22 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信