Change-point detection in Vector-Tensor linear model

IF 0.7 4区 数学 Q3 STATISTICS & PROBABILITY
Haiyue Su , Zhiming Xia , Wenyuan Shang , Meili Shi
{"title":"Change-point detection in Vector-Tensor linear model","authors":"Haiyue Su ,&nbsp;Zhiming Xia ,&nbsp;Wenyuan Shang ,&nbsp;Meili Shi","doi":"10.1016/j.spl.2025.110563","DOIUrl":null,"url":null,"abstract":"<div><div>For high-throughput low-rank data, CANDECOMP/PARAFAC (<span><math><mi>CP</mi></math></span>) decomposition is frequently employed to reduce the dimensionality to a manageable level. In this article, we consider a Vector-Tensor linear regression model, where the low-rank structure is expressed through CP decomposition, and the change-point structure is incorporated into the multi-array coefficients. A novel procedure is proposed to jointly detect the change-point and estimate the tensor structure by minimizing the sum of squared residuals. The associated algorithm is developed based on Alternating Least Squares (ALS) algorithm, and is computationally efficient and scalable. Furthermore, we establish the consistency of the change-point estimator under a set of general conditions. Simulations and empirical studies illustrate the validity and effectiveness.</div></div>","PeriodicalId":49475,"journal":{"name":"Statistics & Probability Letters","volume":"228 ","pages":"Article 110563"},"PeriodicalIF":0.7000,"publicationDate":"2025-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistics & Probability Letters","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167715225002081","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

For high-throughput low-rank data, CANDECOMP/PARAFAC (CP) decomposition is frequently employed to reduce the dimensionality to a manageable level. In this article, we consider a Vector-Tensor linear regression model, where the low-rank structure is expressed through CP decomposition, and the change-point structure is incorporated into the multi-array coefficients. A novel procedure is proposed to jointly detect the change-point and estimate the tensor structure by minimizing the sum of squared residuals. The associated algorithm is developed based on Alternating Least Squares (ALS) algorithm, and is computationally efficient and scalable. Furthermore, we establish the consistency of the change-point estimator under a set of general conditions. Simulations and empirical studies illustrate the validity and effectiveness.
向量张量线性模型的变点检测
对于高吞吐量低秩数据,经常使用CANDECOMP/PARAFAC (CP)分解将维数降低到可管理的水平。在本文中,我们考虑一个向量张量线性回归模型,其中低秩结构通过CP分解表示,并将变点结构纳入多阵列系数中。提出了一种利用残差平方和最小化来联合检测变点和估计张量结构的新方法。该算法基于交替最小二乘(ALS)算法,具有计算效率高、可扩展性强的特点。进一步,我们在一组一般条件下建立了变点估计量的相合性。仿真和实证研究验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Statistics & Probability Letters
Statistics & Probability Letters 数学-统计学与概率论
CiteScore
1.60
自引率
0.00%
发文量
173
审稿时长
6 months
期刊介绍: Statistics & Probability Letters adopts a novel and highly innovative approach to the publication of research findings in statistics and probability. It features concise articles, rapid publication and broad coverage of the statistics and probability literature. Statistics & Probability Letters is a refereed journal. Articles will be limited to six journal pages (13 double-space typed pages) including references and figures. Apart from the six-page limitation, originality, quality and clarity will be the criteria for choosing the material to be published in Statistics & Probability Letters. Every attempt will be made to provide the first review of a submitted manuscript within three months of submission. The proliferation of literature and long publication delays have made it difficult for researchers and practitioners to keep up with new developments outside of, or even within, their specialization. The aim of Statistics & Probability Letters is to help to alleviate this problem. Concise communications (letters) allow readers to quickly and easily digest large amounts of material and to stay up-to-date with developments in all areas of statistics and probability. The mainstream of Letters will focus on new statistical methods, theoretical results, and innovative applications of statistics and probability to other scientific disciplines. Key results and central ideas must be presented in a clear and concise manner. These results may be part of a larger study that the author will submit at a later time as a full length paper to SPL or to another journal. Theory and methodology may be published with proofs omitted, or only sketched, but only if sufficient support material is provided so that the findings can be verified. Empirical and computational results that are of significant value will be published.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信