Unconditional superconvergent error estimates of second-order linearized nonconforming quadrilateral FEMs for nonlinear nuclear reactor model

IF 2.5 2区 数学 Q1 MATHEMATICS, APPLIED
Jinyu Li, Chuanjun Chen, Dongyang Shi
{"title":"Unconditional superconvergent error estimates of second-order linearized nonconforming quadrilateral FEMs for nonlinear nuclear reactor model","authors":"Jinyu Li,&nbsp;Chuanjun Chen,&nbsp;Dongyang Shi","doi":"10.1016/j.camwa.2025.09.031","DOIUrl":null,"url":null,"abstract":"<div><div>The focus of this paper is to establish the linearized Crank-Nicolson (C-N) and two-step Backward Differentiation Formula (BDF2) fully discrete schemes for the nonlinear nuclear reactor model, and investigate their superclose and superconvergent behaviors without the restrictions on the relationship between mesh size <em>h</em> and time step <em>τ</em> on quadrilateral meshes of nonconforming modified quasi-Wilson element. First, we will show that the consistency error of this element can reach <span><math><mi>O</mi><mo>(</mo><msup><mrow><mi>h</mi></mrow><mrow><mn>3</mn></mrow></msup><mo>)</mo></math></span> for homogeneous Neumann boundary condition which is the same as the quasi-Wilson element on rectangular meshes for the Dirichlet boundary condition. Then, based on the combination technique of interpolation and projection, mathematical induction and interpolation post-processing approach, the superclose and superconvergent results <span><math><mi>O</mi><mo>(</mo><msup><mrow><mi>h</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><msup><mrow><mi>τ</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></math></span> in the broken <span><math><msup><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span>-norm are derived. Finally, a numerical illustration is executed to validate the theoretical findings.</div></div>","PeriodicalId":55218,"journal":{"name":"Computers & Mathematics with Applications","volume":"200 ","pages":"Pages 260-275"},"PeriodicalIF":2.5000,"publicationDate":"2025-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Mathematics with Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0898122125004146","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

The focus of this paper is to establish the linearized Crank-Nicolson (C-N) and two-step Backward Differentiation Formula (BDF2) fully discrete schemes for the nonlinear nuclear reactor model, and investigate their superclose and superconvergent behaviors without the restrictions on the relationship between mesh size h and time step τ on quadrilateral meshes of nonconforming modified quasi-Wilson element. First, we will show that the consistency error of this element can reach O(h3) for homogeneous Neumann boundary condition which is the same as the quasi-Wilson element on rectangular meshes for the Dirichlet boundary condition. Then, based on the combination technique of interpolation and projection, mathematical induction and interpolation post-processing approach, the superclose and superconvergent results O(h2+τ2) in the broken H1-norm are derived. Finally, a numerical illustration is executed to validate the theoretical findings.
非线性核反应堆模型二阶线性化非协调四边形有限元的无条件超收敛误差估计
本文的重点是建立非线性核反应堆模型的线性化Crank-Nicolson (C-N)和两步后向微分公式(BDF2)全离散格式,并研究它们在不受网格尺寸h和时间步长τ关系限制的四边形网格上的超接近和超收敛行为。首先,我们将证明该单元在齐次Neumann边界条件下的一致性误差可以达到0 (h3),与Dirichlet边界条件下矩形网格上的准wilson单元相同。然后,利用插值与投影相结合的方法、数学归纳法和插值后处理方法,导出了破碎h1 -范数上的超接近和超收敛结果O(h2+τ2)。最后,通过数值算例验证了理论结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computers & Mathematics with Applications
Computers & Mathematics with Applications 工程技术-计算机:跨学科应用
CiteScore
5.10
自引率
10.30%
发文量
396
审稿时长
9.9 weeks
期刊介绍: Computers & Mathematics with Applications provides a medium of exchange for those engaged in fields contributing to building successful simulations for science and engineering using Partial Differential Equations (PDEs).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信