Hydrogen production via in-situ combustion gasification: Insights from lab-scale modeling assisted by machine learning

IF 5.5 0 ENERGY & FUELS
Ping Song , Yunan Li , Mohamed Amine Ifticene , Qingwang Yuan
{"title":"Hydrogen production via in-situ combustion gasification: Insights from lab-scale modeling assisted by machine learning","authors":"Ping Song ,&nbsp;Yunan Li ,&nbsp;Mohamed Amine Ifticene ,&nbsp;Qingwang Yuan","doi":"10.1016/j.jgsce.2025.205787","DOIUrl":null,"url":null,"abstract":"<div><div>In-situ combustion gasification (ISCG) of heavy oil reservoirs has recently emerged as a promising approach for carbon-zero hydrogen (H<sub>2</sub>) production. While combustion tube experiments report low H<sub>2</sub> production, field-scale projects recorded relatively high H<sub>2</sub> yields. To investigate this discrepancy, we conducted 2000 simulations via CMG-STARS assisted by machine learning and identified the combination of parameters that leads to the optimal scenarios. We found that, under the condition of co-injection of water and air, the temperature with the highest H<sub>2</sub> production is around 400 °C where gasification dominates H<sub>2</sub> generation, while cumulative CO<sub>2</sub> is lower than that of H<sub>2</sub>. The optimized cases revealed up to 57.7 kg/m<sup>3</sup> H<sub>2</sub> per unit of consumed oil and 0.0125 kg total H<sub>2</sub> produced. Our ML models achieved high predictive accuracy (training score &gt;96 %, testing score &gt;88 %), enabling fast evaluation of optimal input conditions. The limited availability of reactants and the inability to sustain high temperatures in combustion tube likely account for the low H<sub>2</sub> production. Machine learning promoted the preliminary validation of the feasibility of ISCG process. This paper also provides insights that can guide future research on H<sub>2</sub> generation via ISCG, thereby supporting the development of this promising technology.</div></div>","PeriodicalId":100568,"journal":{"name":"Gas Science and Engineering","volume":"145 ","pages":"Article 205787"},"PeriodicalIF":5.5000,"publicationDate":"2025-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gas Science and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949908925002511","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

In-situ combustion gasification (ISCG) of heavy oil reservoirs has recently emerged as a promising approach for carbon-zero hydrogen (H2) production. While combustion tube experiments report low H2 production, field-scale projects recorded relatively high H2 yields. To investigate this discrepancy, we conducted 2000 simulations via CMG-STARS assisted by machine learning and identified the combination of parameters that leads to the optimal scenarios. We found that, under the condition of co-injection of water and air, the temperature with the highest H2 production is around 400 °C where gasification dominates H2 generation, while cumulative CO2 is lower than that of H2. The optimized cases revealed up to 57.7 kg/m3 H2 per unit of consumed oil and 0.0125 kg total H2 produced. Our ML models achieved high predictive accuracy (training score >96 %, testing score >88 %), enabling fast evaluation of optimal input conditions. The limited availability of reactants and the inability to sustain high temperatures in combustion tube likely account for the low H2 production. Machine learning promoted the preliminary validation of the feasibility of ISCG process. This paper also provides insights that can guide future research on H2 generation via ISCG, thereby supporting the development of this promising technology.
通过原位燃烧气化制氢:通过机器学习辅助的实验室规模建模的见解
重油储层的原位燃烧气化(ISCG)最近成为一种很有前途的零碳氢(H2)生产方法。虽然燃烧管实验报告H2产量低,但现场规模的项目记录了相对较高的H2产量。为了研究这种差异,我们在机器学习的辅助下,通过CMG-STARS进行了2000次模拟,并确定了导致最佳场景的参数组合。我们发现,在水和空气共注入的条件下,氢气产量最高的温度在400℃左右,气化生成H2占主导地位,而累积CO2低于H2。在优化的情况下,每单位消耗的油可产生57.7 kg/m3氢气,总氢气产量为0.0125 kg。我们的机器学习模型实现了很高的预测准确率(训练分数>; 96%,测试分数>; 88%),能够快速评估最佳输入条件。反应物的有限可用性和无法维持燃烧管内的高温可能是导致H2产量低的原因。机器学习促进了ISCG工艺可行性的初步验证。本文还提供了一些见解,可以指导未来通过ISCG制氢的研究,从而支持这一有前途的技术的发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
11.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信