Thermo-mechanical stress analysis of wellbore integrity in CO2 storage wells: A case study from the Tubåen Formation, Snøhvit Field Norway

IF 5.5 0 ENERGY & FUELS
Jawad Ali Khan , Nejma Djabelkhir , Mazda Irani , Kegang Ling , Saleem Ghori , Sahar Ghannadi
{"title":"Thermo-mechanical stress analysis of wellbore integrity in CO2 storage wells: A case study from the Tubåen Formation, Snøhvit Field Norway","authors":"Jawad Ali Khan ,&nbsp;Nejma Djabelkhir ,&nbsp;Mazda Irani ,&nbsp;Kegang Ling ,&nbsp;Saleem Ghori ,&nbsp;Sahar Ghannadi","doi":"10.1016/j.jgsce.2025.205758","DOIUrl":null,"url":null,"abstract":"<div><div>Ensuring long-term wellbore integrity is a critical challenge in carbon capture and storage (CCS) operations, where mechanical failure at the casing–cement and cement–formation interfaces can create potential leakage pathways. This study presents a fully coupled thermal mechanical Poroelastic finite element analysis (FEA) simulation to evaluate stress redistribution and failure risks in the Tubåen Formation, Snøhvit Field. Previous studies primarily focused on bulk stress distribution while this simulation captured dynamic stress evolution across initial and post-injection phases, providing insight into interface-specific failure mechanisms. Low-temperature CO<sub>2</sub> injections induced localized stresses amplification leading to radial cracking, debonding, and microannulus development. Long-term well integrity is seriously compromised by these mechanisms. The study also integrated the Drucker–Prager plasticity model to identify failures. High-resolution stress distribution maps identified critical failure zones, enabling more accurate predictions of failure initiation. This approach captured transient effects considering long term CO<sub>2</sub> injection projects, providing an understanding about well integrity challenges specifically at the cement interfaces. In addition to improving long-term storage performance and regulatory compliance, the findings support proactive risk mitigation strategies for CCS well designs.</div></div>","PeriodicalId":100568,"journal":{"name":"Gas Science and Engineering","volume":"145 ","pages":"Article 205758"},"PeriodicalIF":5.5000,"publicationDate":"2025-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gas Science and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949908925002225","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Ensuring long-term wellbore integrity is a critical challenge in carbon capture and storage (CCS) operations, where mechanical failure at the casing–cement and cement–formation interfaces can create potential leakage pathways. This study presents a fully coupled thermal mechanical Poroelastic finite element analysis (FEA) simulation to evaluate stress redistribution and failure risks in the Tubåen Formation, Snøhvit Field. Previous studies primarily focused on bulk stress distribution while this simulation captured dynamic stress evolution across initial and post-injection phases, providing insight into interface-specific failure mechanisms. Low-temperature CO2 injections induced localized stresses amplification leading to radial cracking, debonding, and microannulus development. Long-term well integrity is seriously compromised by these mechanisms. The study also integrated the Drucker–Prager plasticity model to identify failures. High-resolution stress distribution maps identified critical failure zones, enabling more accurate predictions of failure initiation. This approach captured transient effects considering long term CO2 injection projects, providing an understanding about well integrity challenges specifically at the cement interfaces. In addition to improving long-term storage performance and regulatory compliance, the findings support proactive risk mitigation strategies for CCS well designs.
CO2储气井井筒完整性热机械应力分析——以挪威Snøhvit油田tub地层为例
在碳捕集与封存(CCS)作业中,确保井筒长期完整性是一个关键挑战,套管-水泥和水泥-地层界面的机械故障可能会造成潜在的泄漏通道。本研究采用全耦合热-力学-孔弹性有限元分析(FEA)模拟方法,对Snøhvit油田tub地层的应力重分布和破坏风险进行了评估。之前的研究主要集中在整体应力分布上,而该模拟捕获了注入初期和注入后阶段的动态应力演变,从而深入了解界面特定的破坏机制。低温CO2注入引起局部应力放大,导致径向开裂、脱粘和微环空发育。这些机制严重损害了井的长期完整性。该研究还整合了Drucker-Prager塑性模型来识别失效。高分辨率的应力分布图确定了关键的破坏区域,从而能够更准确地预测破坏的发生。考虑到长期的二氧化碳注入项目,该方法捕获了瞬态效应,提供了对井完整性挑战的理解,特别是在水泥界面。除了提高长期存储性能和法规遵从性外,研究结果还支持CCS井设计的主动风险缓解策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
11.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信