Pore-scale modeling of multiphase reactive transport in porous media during geological carbon storage in saline aquifers: Mechanisms, progress, and challenges

IF 5.5 0 ENERGY & FUELS
Jinlei Wang , Yongfei Yang , Gloire Imani , Jie Liu , Huaisen Song , Hai Sun , Lei Zhang , Junjie Zhong , Kai Zhang , Jun Yao
{"title":"Pore-scale modeling of multiphase reactive transport in porous media during geological carbon storage in saline aquifers: Mechanisms, progress, and challenges","authors":"Jinlei Wang ,&nbsp;Yongfei Yang ,&nbsp;Gloire Imani ,&nbsp;Jie Liu ,&nbsp;Huaisen Song ,&nbsp;Hai Sun ,&nbsp;Lei Zhang ,&nbsp;Junjie Zhong ,&nbsp;Kai Zhang ,&nbsp;Jun Yao","doi":"10.1016/j.jgsce.2025.205784","DOIUrl":null,"url":null,"abstract":"<div><div>Geological carbon storage (GCS) represents a promising strategy for atmospheric CO<sub>2</sub> reduction and climate change mitigation, with deep saline aquifers standing out as suitable storage sites due to their wide distribution and large storage capacity. The intricate CO<sub>2</sub>-brine-rock interactions during GCS in saline aquifers encompass coupled multiphase flow dynamics, multi-component reactive transport, aqueous-phase homogeneous reactions, and fluid/mineral heterogeneous reactions processes. These processes underpin four primary trapping mechanisms: structural trapping, capillary trapping, dissolution trapping, and mineral trapping. Pore-scale modeling bridges the microscopic and macroscopic scales by providing detailed three-dimensional distributions of physical fields within pore spaces while capturing the evolution of porous media due to geochemical reactions. This comprehensive review not only examines the mechanisms and physicochemical processes underlying CO<sub>2</sub> trapping, but also discusses recent advancements in GCS research within saline aquifers from a pore-scale modeling perspective. Furthermore, challenges and future research directions are discussed. This review provides fundamental insights into multiphase reactive transport at pore scale, supporting the development of predictive models that can enhance the safety and efficiency of long-term CO<sub>2</sub> storage in deep saline aquifers.</div></div>","PeriodicalId":100568,"journal":{"name":"Gas Science and Engineering","volume":"145 ","pages":"Article 205784"},"PeriodicalIF":5.5000,"publicationDate":"2025-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gas Science and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949908925002481","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Geological carbon storage (GCS) represents a promising strategy for atmospheric CO2 reduction and climate change mitigation, with deep saline aquifers standing out as suitable storage sites due to their wide distribution and large storage capacity. The intricate CO2-brine-rock interactions during GCS in saline aquifers encompass coupled multiphase flow dynamics, multi-component reactive transport, aqueous-phase homogeneous reactions, and fluid/mineral heterogeneous reactions processes. These processes underpin four primary trapping mechanisms: structural trapping, capillary trapping, dissolution trapping, and mineral trapping. Pore-scale modeling bridges the microscopic and macroscopic scales by providing detailed three-dimensional distributions of physical fields within pore spaces while capturing the evolution of porous media due to geochemical reactions. This comprehensive review not only examines the mechanisms and physicochemical processes underlying CO2 trapping, but also discusses recent advancements in GCS research within saline aquifers from a pore-scale modeling perspective. Furthermore, challenges and future research directions are discussed. This review provides fundamental insights into multiphase reactive transport at pore scale, supporting the development of predictive models that can enhance the safety and efficiency of long-term CO2 storage in deep saline aquifers.
盐碱层地质储碳过程中多孔介质多相反应输运的孔隙尺度建模:机制、进展和挑战
地质碳储存(GCS)是减少大气二氧化碳和减缓气候变化的一种有前景的战略,深层咸水层由于分布广泛和储存容量大而成为合适的储存地点。在含盐含水层中,复杂的co2 -盐水-岩石相互作用包括耦合多相流动动力学、多组分反应输运、水相均相反应和流体/矿物非均相反应过程。这些过程构成了四种主要的圈闭机制:结构圈闭、毛细管圈闭、溶解圈闭和矿物圈闭。孔隙尺度建模通过提供孔隙空间内物理场的详细三维分布,同时捕捉由于地球化学反应而导致的多孔介质的演化,从而架起微观和宏观尺度的桥梁。这篇综合综述不仅探讨了二氧化碳捕获的机制和物理化学过程,而且从孔隙尺度建模的角度讨论了盐水含水层中GCS研究的最新进展。并对今后的研究方向和面临的挑战进行了展望。这篇综述为孔隙尺度下的多相反应输运提供了基本的见解,支持了预测模型的发展,这些模型可以提高深盐水含水层长期二氧化碳储存的安全性和效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
11.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信