Mathematical modeling for heat transportation analysis in hybrid nanofluid through a wedge surface under the influence of magnetic field

Q1 Mathematics
Bilal Ahmad, Muhammad Ozair Ahmed
{"title":"Mathematical modeling for heat transportation analysis in hybrid nanofluid through a wedge surface under the influence of magnetic field","authors":"Bilal Ahmad,&nbsp;Muhammad Ozair Ahmed","doi":"10.1016/j.padiff.2025.101290","DOIUrl":null,"url":null,"abstract":"<div><div>This study presents a mathematical model to analyze heat transport in a hybrid nanofluid composed of aluminum oxide (Al<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>O<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>) and beryllium copper nanoparticles dispersed in water, flowing over a wedge-shaped surface under the influence of a transverse magnetic field. The formulation incorporates essential physical effects, including radiative heat transfer, activation energy, and chemical reaction kinetics, along with a nonlinear heat source. Using similarity transformations, the governing partial differential equations are reduced to a system of nonlinear ordinary differential equations, which are solved numerically via the fourth-order Runge–Kutta method combined with a shooting technique in <span>MATLAB</span>. The results reveal how magnetic intensity, nanoparticle concentration, and other dimensionless parameters affect the velocity, temperature, and concentration distributions. Significantly, the hybrid nanofluid demonstrates a 23% enhancement in thermal capacity, underscoring its potential to improve heat transfer performance. The computed skin friction, Nusselt number, and Sherwood number further validate the model and highlight its applicability to magnetically controlled thermal systems.</div></div>","PeriodicalId":34531,"journal":{"name":"Partial Differential Equations in Applied Mathematics","volume":"16 ","pages":"Article 101290"},"PeriodicalIF":0.0000,"publicationDate":"2025-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Partial Differential Equations in Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666818125002141","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

This study presents a mathematical model to analyze heat transport in a hybrid nanofluid composed of aluminum oxide (Al2O3) and beryllium copper nanoparticles dispersed in water, flowing over a wedge-shaped surface under the influence of a transverse magnetic field. The formulation incorporates essential physical effects, including radiative heat transfer, activation energy, and chemical reaction kinetics, along with a nonlinear heat source. Using similarity transformations, the governing partial differential equations are reduced to a system of nonlinear ordinary differential equations, which are solved numerically via the fourth-order Runge–Kutta method combined with a shooting technique in MATLAB. The results reveal how magnetic intensity, nanoparticle concentration, and other dimensionless parameters affect the velocity, temperature, and concentration distributions. Significantly, the hybrid nanofluid demonstrates a 23% enhancement in thermal capacity, underscoring its potential to improve heat transfer performance. The computed skin friction, Nusselt number, and Sherwood number further validate the model and highlight its applicability to magnetically controlled thermal systems.
磁场作用下混合纳米流体穿过楔形表面的传热分析数学模型
本文建立了一个数学模型,分析了分散在水中的由氧化铝(Al2O3)和铍铜纳米颗粒组成的混合纳米流体在横向磁场的影响下在楔形表面上流动时的热传递。该配方结合了基本的物理效应,包括辐射传热、活化能和化学反应动力学,以及非线性热源。利用相似变换,将控制偏微分方程转化为非线性常微分方程组,在MATLAB中采用四阶龙格-库塔法结合射击技术对其进行数值求解。结果揭示了磁场强度、纳米颗粒浓度和其他无量纲参数对速度、温度和浓度分布的影响。值得注意的是,混合纳米流体的热容量提高了23%,这表明它具有改善传热性能的潜力。计算的表面摩擦、努塞尔数和舍伍德数进一步验证了该模型,并突出了其在磁控热系统中的适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.20
自引率
0.00%
发文量
138
审稿时长
14 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信