Soliton propagation in optical metamaterials with nonlocal responses: A fractional calculus approach using (q,τ)-Mittag-Leffler functions

Q1 Mathematics
Shaher Momani , Rabha W. Ibrahim
{"title":"Soliton propagation in optical metamaterials with nonlocal responses: A fractional calculus approach using (q,τ)-Mittag-Leffler functions","authors":"Shaher Momani ,&nbsp;Rabha W. Ibrahim","doi":"10.1016/j.padiff.2025.101305","DOIUrl":null,"url":null,"abstract":"<div><div>This work investigates soliton solutions of nonlinear wave equations modeling light propagation in optical metamaterials with nonlocal nonlinear responses, incorporating external optical potentials. The residual power series method (RPSM) is employed to construct enhanced analytical solutions, capturing both dispersive and memory effects effectively. In addition, this study investigates the propagation of solitons in optical metamaterials with nonlocal responses using <span><math><mrow><mo>(</mo><mi>q</mi><mo>,</mo><mi>τ</mi><mo>)</mo></mrow></math></span>-fractional calculus. This calculus is based on the generalization of the quantum gamma function (<span><math><mrow><mrow><mo>(</mo><mi>q</mi><mo>,</mo><mi>τ</mi><mo>)</mo></mrow><mo>−</mo><mi>Γ</mi><mrow><mo>(</mo><mo>.</mo><mo>)</mo></mrow></mrow></math></span>). By employing <span><math><mrow><mo>(</mo><mi>q</mi><mo>,</mo><mi>τ</mi><mo>)</mo></mrow></math></span>-fractional derivatives in the form of the <span><math><mrow><mo>(</mo><mi>q</mi><mo>,</mo><mi>τ</mi><mo>)</mo></mrow></math></span>-Mittag-Leffler function, we explore the dynamics of soliton fields in these materials. The model considers key parameters such as the fractional order <span><math><mi>α</mi></math></span>, the generalized parameters <span><math><mi>q</mi></math></span> and <span><math><mi>τ</mi></math></span>, and the initial weight parameter <span><math><mi>β</mi></math></span>. The flexibility of these parameters allows for a more accurate description of optical metamaterials, capturing both classical soliton behavior and more complex nonlocal and memory effects. We compare fractional models with classical models and demonstrate the advantages of using fractional calculus to model memory effects and nonlocal interactions. Numerical simulations, including the residual series method, reveal the enhanced accuracy and insights provided by the fractional approach in optical metamaterials. The study provides a detailed framework for understanding soliton propagation in advanced optical materials, paving the way for the design of next-generation optical devices.</div></div>","PeriodicalId":34531,"journal":{"name":"Partial Differential Equations in Applied Mathematics","volume":"16 ","pages":"Article 101305"},"PeriodicalIF":0.0000,"publicationDate":"2025-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Partial Differential Equations in Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666818125002311","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

This work investigates soliton solutions of nonlinear wave equations modeling light propagation in optical metamaterials with nonlocal nonlinear responses, incorporating external optical potentials. The residual power series method (RPSM) is employed to construct enhanced analytical solutions, capturing both dispersive and memory effects effectively. In addition, this study investigates the propagation of solitons in optical metamaterials with nonlocal responses using (q,τ)-fractional calculus. This calculus is based on the generalization of the quantum gamma function ((q,τ)Γ(.)). By employing (q,τ)-fractional derivatives in the form of the (q,τ)-Mittag-Leffler function, we explore the dynamics of soliton fields in these materials. The model considers key parameters such as the fractional order α, the generalized parameters q and τ, and the initial weight parameter β. The flexibility of these parameters allows for a more accurate description of optical metamaterials, capturing both classical soliton behavior and more complex nonlocal and memory effects. We compare fractional models with classical models and demonstrate the advantages of using fractional calculus to model memory effects and nonlocal interactions. Numerical simulations, including the residual series method, reveal the enhanced accuracy and insights provided by the fractional approach in optical metamaterials. The study provides a detailed framework for understanding soliton propagation in advanced optical materials, paving the way for the design of next-generation optical devices.
具有非局部响应的光学超材料中的孤子传播:使用(q,τ)-Mittag-Leffler函数的分数阶微积分方法
本文研究了非线性波动方程的孤子解,该方程模拟光在具有非局部非线性响应的光学超材料中的传播,并考虑了外部光势。残差幂级数法(RPSM)用于构造增强解析解,有效地捕获了色散效应和记忆效应。此外,本研究利用(q,τ)分数阶微积分研究了具有非局域响应的光学超材料中孤子的传播。这种演算是基于量子伽马函数((q,τ)−Γ(.))的推广。通过采用(q,τ)-分数阶导数形式的(q,τ)-Mittag-Leffler函数,我们探索了这些材料中孤子场的动力学。该模型考虑了分数阶α、广义参数q和τ以及初始权重参数β等关键参数。这些参数的灵活性允许更准确地描述光学超材料,捕捉经典孤子行为和更复杂的非局部和记忆效应。我们比较了分数阶模型和经典模型,并证明了使用分数阶微积分来模拟记忆效应和非局部相互作用的优势。数值模拟,包括残差序列方法,揭示了分数方法在光学超材料中提高的精度和洞察力。该研究为理解孤子在先进光学材料中的传播提供了一个详细的框架,为下一代光学器件的设计铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.20
自引率
0.00%
发文量
138
审稿时长
14 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信