Computational study of steady micropolar hybrid nanofluid flow between permeable walls: Impact of reynolds and peclet numbers using advanced numerical methods

Q1 Chemical Engineering
Pooriya Majidi Zar , Payam Jalili , Davood Domiri Ganji , Bahram Jalili
{"title":"Computational study of steady micropolar hybrid nanofluid flow between permeable walls: Impact of reynolds and peclet numbers using advanced numerical methods","authors":"Pooriya Majidi Zar ,&nbsp;Payam Jalili ,&nbsp;Davood Domiri Ganji ,&nbsp;Bahram Jalili","doi":"10.1016/j.ijft.2025.101429","DOIUrl":null,"url":null,"abstract":"<div><div>This study investigates the steady, two-dimensional flow of a micropolar hybrid nanofluid between two parallel porous walls under varying Reynolds and Peclet numbers. Advanced numerical techniques, specifically the Akbari-Ganji Method (AGM) and the Homotopy Perturbation Method (HPM), are employed to solve the governing nonlinear differential Eqs.. The effects of key dimensionless parameters, including the Reynolds number, Peclet number, and coupling parameters, on velocity, temperature, and concentration profiles are examined. Results indicate that increasing the Reynolds number reduces the stream function, while a higher Peclet number enhances heat transfer. The influence of suction and injection on fluid dynamics and thermal behavior is also explored, revealing that suction diminishes the dimensionless parameters, whereas injection amplifies them. To enhance thermal and transport performance, Al<sub>₂</sub>O<sub>₃</sub>–SiO<sub>₂</sub> hybrid nanofluids are incorporated into the analysis, combining high thermal conductivity, stability, and biocompatibility with pH sensitivity suitable for tumor environments. These findings offer new insights into the behavior of micropolar hybrid nanofluids in porous media, contributing to the optimization of fluid flow systems in engineering applications. Moreover, due to their ability to model microstructural effects and rotational dynamics, micropolar fluids combined with Al<sub>₂</sub>O<sub>₃</sub>–SiO<sub>₂</sub> hybrids show promising potential in biomedical applications such as targeted drug delivery and cancer therapy, where precise control over transport phenomena is critical.</div></div>","PeriodicalId":36341,"journal":{"name":"International Journal of Thermofluids","volume":"30 ","pages":"Article 101429"},"PeriodicalIF":0.0000,"publicationDate":"2025-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Thermofluids","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666202725003751","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Chemical Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

This study investigates the steady, two-dimensional flow of a micropolar hybrid nanofluid between two parallel porous walls under varying Reynolds and Peclet numbers. Advanced numerical techniques, specifically the Akbari-Ganji Method (AGM) and the Homotopy Perturbation Method (HPM), are employed to solve the governing nonlinear differential Eqs.. The effects of key dimensionless parameters, including the Reynolds number, Peclet number, and coupling parameters, on velocity, temperature, and concentration profiles are examined. Results indicate that increasing the Reynolds number reduces the stream function, while a higher Peclet number enhances heat transfer. The influence of suction and injection on fluid dynamics and thermal behavior is also explored, revealing that suction diminishes the dimensionless parameters, whereas injection amplifies them. To enhance thermal and transport performance, AlO–SiO hybrid nanofluids are incorporated into the analysis, combining high thermal conductivity, stability, and biocompatibility with pH sensitivity suitable for tumor environments. These findings offer new insights into the behavior of micropolar hybrid nanofluids in porous media, contributing to the optimization of fluid flow systems in engineering applications. Moreover, due to their ability to model microstructural effects and rotational dynamics, micropolar fluids combined with AlO–SiO hybrids show promising potential in biomedical applications such as targeted drug delivery and cancer therapy, where precise control over transport phenomena is critical.
微极性混合纳米流体在可渗透壁间稳定流动的计算研究:用先进数值方法研究雷诺数和小波数的影响
本研究研究了微极性混合纳米流体在不同雷诺数和佩克雷数下在两个平行多孔壁上的稳定二维流动。采用先进的数值技术,特别是Akbari-Ganji法(AGM)和同伦摄动法(HPM)来求解控制非线性微分方程。主要的无量纲参数,包括雷诺数、佩莱特数和耦合参数,对速度、温度和浓度分布的影响进行了研究。结果表明,雷诺数的增加减小了流函数,而Peclet数的增加则增强了换热。研究了吸力和注射对流体动力学和热行为的影响,发现吸力减小了无量纲参数,而注射放大了无量纲参数。为了增强热传导和传输性能,Al₂O₃-SiO₂混合纳米流体被纳入分析,结合高导热性,稳定性和生物相容性以及适合肿瘤环境的pH敏感性。这些发现为微极性混合纳米流体在多孔介质中的行为提供了新的见解,有助于优化工程应用中的流体流动系统。此外,由于它们能够模拟微观结构效应和旋转动力学,微极性流体与Al₂O₃-SiO₂混合物结合在一起,在生物医学应用中显示出很大的潜力,例如靶向药物输送和癌症治疗,在这些应用中,精确控制传输现象是至关重要的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Thermofluids
International Journal of Thermofluids Engineering-Mechanical Engineering
CiteScore
10.10
自引率
0.00%
发文量
111
审稿时长
66 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信