Analytic investigation of the (2+1)-dimensional Heisenberg ferromagnetic spin chain equation with M-fractional derivative

Q1 Mathematics
Zehra Tat, Emrullah Yaşar
{"title":"Analytic investigation of the (2+1)-dimensional Heisenberg ferromagnetic spin chain equation with M-fractional derivative","authors":"Zehra Tat,&nbsp;Emrullah Yaşar","doi":"10.1016/j.padiff.2025.101302","DOIUrl":null,"url":null,"abstract":"<div><div>In this study, we examine the Heisenberg ferromagnetic spin chain equation in complex form in (2+1) dimensions, which is closely related to ferromagnetic materials and is used in spin wave dynamics modeling. To better interpret the model physically, we considered M-truncated time fractional derivative operator and used the generalized exponential rational function and extended trial equation methods to reveal the exact solution forms. These exact solution forms are presented in hyperbolic, trigonometric, and rational forms. We give 2D and 3D numerical simulations of exact solution profiles. The importance of fractional calculus in extending nonlinear theory is emphasized.</div></div>","PeriodicalId":34531,"journal":{"name":"Partial Differential Equations in Applied Mathematics","volume":"16 ","pages":"Article 101302"},"PeriodicalIF":0.0000,"publicationDate":"2025-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Partial Differential Equations in Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666818125002281","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, we examine the Heisenberg ferromagnetic spin chain equation in complex form in (2+1) dimensions, which is closely related to ferromagnetic materials and is used in spin wave dynamics modeling. To better interpret the model physically, we considered M-truncated time fractional derivative operator and used the generalized exponential rational function and extended trial equation methods to reveal the exact solution forms. These exact solution forms are presented in hyperbolic, trigonometric, and rational forms. We give 2D and 3D numerical simulations of exact solution profiles. The importance of fractional calculus in extending nonlinear theory is emphasized.
具有m阶导数的(2+1)维Heisenberg铁磁自旋链方程的解析研究
在本研究中,我们研究了(2+1)维的复杂形式的Heisenberg铁磁自旋链方程,该方程与铁磁材料密切相关,并用于自旋波动力学建模。为了更好地从物理上解释模型,我们考虑了m截断时间分数阶导数算子,并使用广义指数有理函数和扩展试验方程方法揭示了精确解的形式。这些精确解形式以双曲、三角和有理形式呈现。我们给出了精确解轮廓的二维和三维数值模拟。强调了分数阶微积分在推广非线性理论中的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.20
自引率
0.00%
发文量
138
审稿时长
14 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信