Metal-organic frameworks for advancing photocatalytic and electrocatalytic hydrogen evolution

IF 7.2 2区 工程技术 Q1 ENGINEERING, CHEMICAL
Mmapule M. Phasha , Kabelo E. Ramohlola , Reineck Mhlaba , Kwena D. Modibane
{"title":"Metal-organic frameworks for advancing photocatalytic and electrocatalytic hydrogen evolution","authors":"Mmapule M. Phasha ,&nbsp;Kabelo E. Ramohlola ,&nbsp;Reineck Mhlaba ,&nbsp;Kwena D. Modibane","doi":"10.1016/j.jece.2025.119594","DOIUrl":null,"url":null,"abstract":"<div><div>This review offers comprehensive overview of the application of metal-organic frameworks (MOFs) in photocatalytic and electrocatalytic hydrogen evolution reactions (HER), essential for clean and sustainable hydrogen production. It explores the distinctive structural characteristics of MOFs, including their high surface area, tunable pore environments, and versatile metal centers, which enable efficient hydrogen generation. It also introduces catenation as a modification strategy, with studies showing that catenated MOF exhibit exceptional porosity, with structures that can reach up to 65 % porosity. The review explores into current developments in MOF-based photocatalysts and electrocatalysts, addressing strategies to enhance their stability, catalytic performance, and electronic properties. Challenges such as scalability, long-term stability, and reaction efficiency are discussed, along with future perspectives for optimizing MOF-based systems for real-world energy applications.</div></div>","PeriodicalId":15759,"journal":{"name":"Journal of Environmental Chemical Engineering","volume":"13 6","pages":"Article 119594"},"PeriodicalIF":7.2000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Environmental Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2213343725042903","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This review offers comprehensive overview of the application of metal-organic frameworks (MOFs) in photocatalytic and electrocatalytic hydrogen evolution reactions (HER), essential for clean and sustainable hydrogen production. It explores the distinctive structural characteristics of MOFs, including their high surface area, tunable pore environments, and versatile metal centers, which enable efficient hydrogen generation. It also introduces catenation as a modification strategy, with studies showing that catenated MOF exhibit exceptional porosity, with structures that can reach up to 65 % porosity. The review explores into current developments in MOF-based photocatalysts and electrocatalysts, addressing strategies to enhance their stability, catalytic performance, and electronic properties. Challenges such as scalability, long-term stability, and reaction efficiency are discussed, along with future perspectives for optimizing MOF-based systems for real-world energy applications.
推进光催化和电催化析氢的金属有机框架
本文综述了金属有机骨架(MOFs)在光催化和电催化析氢反应(HER)中的应用,对清洁和可持续制氢至关重要。它探索了mof的独特结构特征,包括它们的高表面积、可调节的孔隙环境和多功能金属中心,从而实现高效的氢气生成。此外,还引入了链链效应作为一种改性策略,研究表明,链链效应的MOF具有特殊的孔隙度,其结构孔隙度可达65% %。综述了基于mof的光催化剂和电催化剂的研究进展,提出了提高其稳定性、催化性能和电子性能的策略。讨论了可扩展性、长期稳定性和反应效率等挑战,以及优化基于mof的系统用于实际能源应用的未来前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Environmental Chemical Engineering
Journal of Environmental Chemical Engineering Environmental Science-Pollution
CiteScore
11.40
自引率
6.50%
发文量
2017
审稿时长
27 days
期刊介绍: The Journal of Environmental Chemical Engineering (JECE) serves as a platform for the dissemination of original and innovative research focusing on the advancement of environmentally-friendly, sustainable technologies. JECE emphasizes the transition towards a carbon-neutral circular economy and a self-sufficient bio-based economy. Topics covered include soil, water, wastewater, and air decontamination; pollution monitoring, prevention, and control; advanced analytics, sensors, impact and risk assessment methodologies in environmental chemical engineering; resource recovery (water, nutrients, materials, energy); industrial ecology; valorization of waste streams; waste management (including e-waste); climate-water-energy-food nexus; novel materials for environmental, chemical, and energy applications; sustainability and environmental safety; water digitalization, water data science, and machine learning; process integration and intensification; recent developments in green chemistry for synthesis, catalysis, and energy; and original research on contaminants of emerging concern, persistent chemicals, and priority substances, including microplastics, nanoplastics, nanomaterials, micropollutants, antimicrobial resistance genes, and emerging pathogens (viruses, bacteria, parasites) of environmental significance.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信