First-principle investigation of electronic coupling and charge transfer in ZnO/VS₂ Z-scheme heterostructure for superior photocatalytic water splitting

IF 6.3 2区 材料科学 Q2 CHEMISTRY, PHYSICAL
Saba Shoaib , Mian Azmat , Caimu Wang , Hajra Baig , Wei Guo , Zebiao Li , Xinxin Lu , Zhuo Chen
{"title":"First-principle investigation of electronic coupling and charge transfer in ZnO/VS₂ Z-scheme heterostructure for superior photocatalytic water splitting","authors":"Saba Shoaib ,&nbsp;Mian Azmat ,&nbsp;Caimu Wang ,&nbsp;Hajra Baig ,&nbsp;Wei Guo ,&nbsp;Zebiao Li ,&nbsp;Xinxin Lu ,&nbsp;Zhuo Chen","doi":"10.1016/j.surfin.2025.107745","DOIUrl":null,"url":null,"abstract":"<div><div>Hydrogen energy is pivotal in facilitating a green and low-carbon transition, and solar irradiation offers a viable pathway for producing clean hydrogen. However, its efficiency is hindered by rapid electron-hole recombination. In the present study, this limitation is addressed by constructing a ZnO/VS<sub>2</sub> heterostructure that generates an interfacial electric field to improve charge separation and prolong carrier lifetimes. First-principles calculations reveal that the ZnO/VS<sub>2</sub> van der Waals heterostructure combines thermodynamic stability, confirmed by binding energy, elastic modulus, and AIMD simulations, with strong photocatalytic potential for the hydrogen evolution reaction (HER) under visible light. Differential charge density mapping shows an intrinsic interfacial electric field that improves charge separation, enabling spontaneous redox-driven water splitting at pH = 0. The heterostructure achieves a peak solar-to-hydrogen efficiency of 38.3 % and carrier mobility of 2882.14 cm²/Vs. Biaxial strain (−3 % to +3 %) progressively narrows the band gap, while hydrogen adsorption analysis yields a near-optimal ΔG<sub>H</sub> confirming favorable HER thermodynamics. These results position ZnO/VS<sub>2</sub> as a potential photocatalyst for high performance solar hydrogen production.</div></div>","PeriodicalId":22081,"journal":{"name":"Surfaces and Interfaces","volume":"74 ","pages":"Article 107745"},"PeriodicalIF":6.3000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Surfaces and Interfaces","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468023025019972","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Hydrogen energy is pivotal in facilitating a green and low-carbon transition, and solar irradiation offers a viable pathway for producing clean hydrogen. However, its efficiency is hindered by rapid electron-hole recombination. In the present study, this limitation is addressed by constructing a ZnO/VS2 heterostructure that generates an interfacial electric field to improve charge separation and prolong carrier lifetimes. First-principles calculations reveal that the ZnO/VS2 van der Waals heterostructure combines thermodynamic stability, confirmed by binding energy, elastic modulus, and AIMD simulations, with strong photocatalytic potential for the hydrogen evolution reaction (HER) under visible light. Differential charge density mapping shows an intrinsic interfacial electric field that improves charge separation, enabling spontaneous redox-driven water splitting at pH = 0. The heterostructure achieves a peak solar-to-hydrogen efficiency of 38.3 % and carrier mobility of 2882.14 cm²/Vs. Biaxial strain (−3 % to +3 %) progressively narrows the band gap, while hydrogen adsorption analysis yields a near-optimal ΔGH confirming favorable HER thermodynamics. These results position ZnO/VS2 as a potential photocatalyst for high performance solar hydrogen production.

Abstract Image

ZnO/VS₂z异质结构中电子耦合和电荷转移的第一性原理研究
氢能是促进绿色低碳转型的关键,而太阳能辐射为生产清洁氢提供了可行的途径。然而,它的效率受到快速电子-空穴复合的阻碍。在本研究中,通过构建ZnO/VS2异质结构来解决这一限制,该异质结构产生界面电场,以改善电荷分离并延长载流子寿命。第一性原理计算表明,ZnO/VS2范德华异质结构结合了结合能、弹性模量和AIMD模拟所证实的热力学稳定性,并在可见光下具有很强的析氢反应光催化潜力。差分电荷密度图显示了一个改善电荷分离的内在界面电场,使pH = 0时氧化还原驱动的自发水分裂成为可能。该异质结构的太阳能制氢效率达到38.3%,载流子迁移率达到2882.14 cm²/Vs。双轴应变(- 3%至+ 3%)逐渐缩小带隙,而氢吸附分析产生接近最佳ΔGH确认有利的HER热力学。这些结果表明ZnO/VS2是一种潜在的高性能太阳能制氢光催化剂。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Surfaces and Interfaces
Surfaces and Interfaces Chemistry-General Chemistry
CiteScore
8.50
自引率
6.50%
发文量
753
审稿时长
35 days
期刊介绍: The aim of the journal is to provide a respectful outlet for ''sound science'' papers in all research areas on surfaces and interfaces. We define sound science papers as papers that describe new and well-executed research, but that do not necessarily provide brand new insights or are merely a description of research results. Surfaces and Interfaces publishes research papers in all fields of surface science which may not always find the right home on first submission to our Elsevier sister journals (Applied Surface, Surface and Coatings Technology, Thin Solid Films)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信