{"title":"The influence of tidal currents and sea ice on wave dynamics in Cook Inlet, Alaska","authors":"Martin Henke , Zhaoqing Yang","doi":"10.1016/j.ocemod.2025.102635","DOIUrl":null,"url":null,"abstract":"<div><div>Cook Inlet, Alaska is a unique tidal estuary with extreme tidal regimes and the presence of seasonal ice coverage. In this study, the wave dynamics of Cook Inlet are explored through analysis of in-situ wave observations and spectral wave model simulations. The analysis first assesses the wave climate from an existing dataset — showing low-energy wave conditions as a mean state for the upper and lower inlets. Following, wave observations within the inlet are analyzed to reveal modulation by tidal constituents. Finally, a region-specific, ocean circulation coupled, spectral wave model is run over a storm event with current and ice forcings present. This simulation reveals that under extreme wind conditions, large waves can exceed 2 m and 6 m in the upper and lower inlet sections. Simulations results demonstrate that increases in significant wave height up to 1 m are observed due to the effects of wave–current interaction on opposing current gradients. This analysis provides insight into how the tidal phase can amplify or diminish wave energy over large extents of the inlet and the role sea ice plays in limiting regional wave energy. These outcomes demonstrate the combined influence of environmental variables current, water levels, and ice influencing wave dynamics and stress the importance of their implementation in wave modeling frameworks where applicable.</div></div>","PeriodicalId":19457,"journal":{"name":"Ocean Modelling","volume":"199 ","pages":"Article 102635"},"PeriodicalIF":2.9000,"publicationDate":"2025-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ocean Modelling","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1463500325001386","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Cook Inlet, Alaska is a unique tidal estuary with extreme tidal regimes and the presence of seasonal ice coverage. In this study, the wave dynamics of Cook Inlet are explored through analysis of in-situ wave observations and spectral wave model simulations. The analysis first assesses the wave climate from an existing dataset — showing low-energy wave conditions as a mean state for the upper and lower inlets. Following, wave observations within the inlet are analyzed to reveal modulation by tidal constituents. Finally, a region-specific, ocean circulation coupled, spectral wave model is run over a storm event with current and ice forcings present. This simulation reveals that under extreme wind conditions, large waves can exceed 2 m and 6 m in the upper and lower inlet sections. Simulations results demonstrate that increases in significant wave height up to 1 m are observed due to the effects of wave–current interaction on opposing current gradients. This analysis provides insight into how the tidal phase can amplify or diminish wave energy over large extents of the inlet and the role sea ice plays in limiting regional wave energy. These outcomes demonstrate the combined influence of environmental variables current, water levels, and ice influencing wave dynamics and stress the importance of their implementation in wave modeling frameworks where applicable.
期刊介绍:
The main objective of Ocean Modelling is to provide rapid communication between those interested in ocean modelling, whether through direct observation, or through analytical, numerical or laboratory models, and including interactions between physical and biogeochemical or biological phenomena. Because of the intimate links between ocean and atmosphere, involvement of scientists interested in influences of either medium on the other is welcome. The journal has a wide scope and includes ocean-atmosphere interaction in various forms as well as pure ocean results. In addition to primary peer-reviewed papers, the journal provides review papers, preliminary communications, and discussions.