{"title":"Trace duality and additive complementary pairs of additive cyclic codes over finite chain rings","authors":"Sanjit Bhowmick , Kuntal Deka , Alexandre Fotue Tabue , Edgar Martínez-Moro","doi":"10.1016/j.ffa.2025.102732","DOIUrl":null,"url":null,"abstract":"<div><div>This paper investigates the algebraic structure of complementary pairs of additive cyclic codes over a finite commutative chain ring of odd characteristic. We demonstrate that for every additive complementary pair of additive codes, both constituent codes are free modules. Moreover, we present a necessary and sufficient condition for a pair of additive codes over a finite commutative chain ring of odd characteristic to form an additive complementary pair. Finally, we show that, in the case of a complementary pair of additive cyclic codes over a finite chain ring of odd characteristic, one of the codes is permutation equivalent to the trace dual of the other.</div></div>","PeriodicalId":50446,"journal":{"name":"Finite Fields and Their Applications","volume":"110 ","pages":"Article 102732"},"PeriodicalIF":1.2000,"publicationDate":"2025-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Finite Fields and Their Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1071579725001625","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
This paper investigates the algebraic structure of complementary pairs of additive cyclic codes over a finite commutative chain ring of odd characteristic. We demonstrate that for every additive complementary pair of additive codes, both constituent codes are free modules. Moreover, we present a necessary and sufficient condition for a pair of additive codes over a finite commutative chain ring of odd characteristic to form an additive complementary pair. Finally, we show that, in the case of a complementary pair of additive cyclic codes over a finite chain ring of odd characteristic, one of the codes is permutation equivalent to the trace dual of the other.
期刊介绍:
Finite Fields and Their Applications is a peer-reviewed technical journal publishing papers in finite field theory as well as in applications of finite fields. As a result of applications in a wide variety of areas, finite fields are increasingly important in several areas of mathematics, including linear and abstract algebra, number theory and algebraic geometry, as well as in computer science, statistics, information theory, and engineering.
For cohesion, and because so many applications rely on various theoretical properties of finite fields, it is essential that there be a core of high-quality papers on theoretical aspects. In addition, since much of the vitality of the area comes from computational problems, the journal publishes papers on computational aspects of finite fields as well as on algorithms and complexity of finite field-related methods.
The journal also publishes papers in various applications including, but not limited to, algebraic coding theory, cryptology, combinatorial design theory, pseudorandom number generation, and linear recurring sequences. There are other areas of application to be included, but the important point is that finite fields play a nontrivial role in the theory, application, or algorithm.