From 3D culture to clinical decision-making: Systematic innovations in breast cancer organoids

IF 6 2区 医学 Q2 MATERIALS SCIENCE, BIOMATERIALS
Mingyu Hu , Chenxin Zhou , Mei Li , Jiyuan Zhao
{"title":"From 3D culture to clinical decision-making: Systematic innovations in breast cancer organoids","authors":"Mingyu Hu ,&nbsp;Chenxin Zhou ,&nbsp;Mei Li ,&nbsp;Jiyuan Zhao","doi":"10.1016/j.bioadv.2025.214528","DOIUrl":null,"url":null,"abstract":"<div><div>Breast cancer is a malignant tumour with high heterogeneity. Traditional research models rely mainly on 2D cell culture and patient-derived tumour xenografts (PDXs). However, these models have limited use in clinical trials because of their shortcomings in mimicking the tumour microenvironment and preserving the genetic background. In recent years, organoids, emerging models capable of self-organizing to form 3D structures in vitro, have become key tools for overcoming the traditional dilemma and are promising alternatives for breast cancer research. This review integrates cutting-edge technologies such as organ-on-a-chip and CRISPR/Cas9 gene editing to summarize the multidimensional generation strategy of breast cancer organoids and discusses the clinical value of translation from diagnosis to therapy. Compared with existing studies, this review provides a systematic solution from “model generation” to “precision medicine” for breast cancer research, and the hope is that this review will pave the way for the further development of organoids.</div></div>","PeriodicalId":51111,"journal":{"name":"Materials Science & Engineering C-Materials for Biological Applications","volume":"179 ","pages":"Article 214528"},"PeriodicalIF":6.0000,"publicationDate":"2025-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science & Engineering C-Materials for Biological Applications","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772950825003553","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

Breast cancer is a malignant tumour with high heterogeneity. Traditional research models rely mainly on 2D cell culture and patient-derived tumour xenografts (PDXs). However, these models have limited use in clinical trials because of their shortcomings in mimicking the tumour microenvironment and preserving the genetic background. In recent years, organoids, emerging models capable of self-organizing to form 3D structures in vitro, have become key tools for overcoming the traditional dilemma and are promising alternatives for breast cancer research. This review integrates cutting-edge technologies such as organ-on-a-chip and CRISPR/Cas9 gene editing to summarize the multidimensional generation strategy of breast cancer organoids and discusses the clinical value of translation from diagnosis to therapy. Compared with existing studies, this review provides a systematic solution from “model generation” to “precision medicine” for breast cancer research, and the hope is that this review will pave the way for the further development of organoids.
从3D培养到临床决策:乳腺癌类器官的系统创新
乳腺癌是一种具有高度异质性的恶性肿瘤。传统的研究模型主要依赖于二维细胞培养和患者来源的肿瘤异种移植(PDXs)。然而,这些模型在临床试验中的应用有限,因为它们在模拟肿瘤微环境和保留遗传背景方面存在缺陷。近年来,能够在体外自组织形成三维结构的类器官模型已经成为克服传统困境的关键工具,并且是乳腺癌研究的有希望的替代方法。本文结合器官芯片(organ-on-a-chip)、CRISPR/Cas9基因编辑等前沿技术,综述乳腺癌类器官的多维生成策略,并探讨从诊断到治疗转化的临床价值。与已有研究相比,本综述为乳腺癌研究提供了从“模型生成”到“精准医学”的系统解决方案,希望为类器官的进一步发展铺平道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
17.80
自引率
0.00%
发文量
501
审稿时长
27 days
期刊介绍: Biomaterials Advances, previously known as Materials Science and Engineering: C-Materials for Biological Applications (P-ISSN: 0928-4931, E-ISSN: 1873-0191). Includes topics at the interface of the biomedical sciences and materials engineering. These topics include: • Bioinspired and biomimetic materials for medical applications • Materials of biological origin for medical applications • Materials for "active" medical applications • Self-assembling and self-healing materials for medical applications • "Smart" (i.e., stimulus-response) materials for medical applications • Ceramic, metallic, polymeric, and composite materials for medical applications • Materials for in vivo sensing • Materials for in vivo imaging • Materials for delivery of pharmacologic agents and vaccines • Novel approaches for characterizing and modeling materials for medical applications Manuscripts on biological topics without a materials science component, or manuscripts on materials science without biological applications, will not be considered for publication in Materials Science and Engineering C. New submissions are first assessed for language, scope and originality (plagiarism check) and can be desk rejected before review if they need English language improvements, are out of scope or present excessive duplication with published sources. Biomaterials Advances sits within Elsevier''s biomaterials science portfolio alongside Biomaterials, Materials Today Bio and Biomaterials and Biosystems. As part of the broader Materials Today family, Biomaterials Advances offers authors rigorous peer review, rapid decisions, and high visibility. We look forward to receiving your submissions!
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信