{"title":"From 3D culture to clinical decision-making: Systematic innovations in breast cancer organoids","authors":"Mingyu Hu , Chenxin Zhou , Mei Li , Jiyuan Zhao","doi":"10.1016/j.bioadv.2025.214528","DOIUrl":null,"url":null,"abstract":"<div><div>Breast cancer is a malignant tumour with high heterogeneity. Traditional research models rely mainly on 2D cell culture and patient-derived tumour xenografts (PDXs). However, these models have limited use in clinical trials because of their shortcomings in mimicking the tumour microenvironment and preserving the genetic background. In recent years, organoids, emerging models capable of self-organizing to form 3D structures in vitro, have become key tools for overcoming the traditional dilemma and are promising alternatives for breast cancer research. This review integrates cutting-edge technologies such as organ-on-a-chip and CRISPR/Cas9 gene editing to summarize the multidimensional generation strategy of breast cancer organoids and discusses the clinical value of translation from diagnosis to therapy. Compared with existing studies, this review provides a systematic solution from “model generation” to “precision medicine” for breast cancer research, and the hope is that this review will pave the way for the further development of organoids.</div></div>","PeriodicalId":51111,"journal":{"name":"Materials Science & Engineering C-Materials for Biological Applications","volume":"179 ","pages":"Article 214528"},"PeriodicalIF":6.0000,"publicationDate":"2025-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science & Engineering C-Materials for Biological Applications","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772950825003553","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Breast cancer is a malignant tumour with high heterogeneity. Traditional research models rely mainly on 2D cell culture and patient-derived tumour xenografts (PDXs). However, these models have limited use in clinical trials because of their shortcomings in mimicking the tumour microenvironment and preserving the genetic background. In recent years, organoids, emerging models capable of self-organizing to form 3D structures in vitro, have become key tools for overcoming the traditional dilemma and are promising alternatives for breast cancer research. This review integrates cutting-edge technologies such as organ-on-a-chip and CRISPR/Cas9 gene editing to summarize the multidimensional generation strategy of breast cancer organoids and discusses the clinical value of translation from diagnosis to therapy. Compared with existing studies, this review provides a systematic solution from “model generation” to “precision medicine” for breast cancer research, and the hope is that this review will pave the way for the further development of organoids.
期刊介绍:
Biomaterials Advances, previously known as Materials Science and Engineering: C-Materials for Biological Applications (P-ISSN: 0928-4931, E-ISSN: 1873-0191). Includes topics at the interface of the biomedical sciences and materials engineering. These topics include:
• Bioinspired and biomimetic materials for medical applications
• Materials of biological origin for medical applications
• Materials for "active" medical applications
• Self-assembling and self-healing materials for medical applications
• "Smart" (i.e., stimulus-response) materials for medical applications
• Ceramic, metallic, polymeric, and composite materials for medical applications
• Materials for in vivo sensing
• Materials for in vivo imaging
• Materials for delivery of pharmacologic agents and vaccines
• Novel approaches for characterizing and modeling materials for medical applications
Manuscripts on biological topics without a materials science component, or manuscripts on materials science without biological applications, will not be considered for publication in Materials Science and Engineering C. New submissions are first assessed for language, scope and originality (plagiarism check) and can be desk rejected before review if they need English language improvements, are out of scope or present excessive duplication with published sources.
Biomaterials Advances sits within Elsevier''s biomaterials science portfolio alongside Biomaterials, Materials Today Bio and Biomaterials and Biosystems. As part of the broader Materials Today family, Biomaterials Advances offers authors rigorous peer review, rapid decisions, and high visibility. We look forward to receiving your submissions!