Assessment of soil erosion patterns in Maharloo watershed using remote sensing techniques and early warning signals

IF 2.5 3区 环境科学与生态学 Q2 ECOLOGY
Farzaneh Fathi , Narges Kariminejad , Abdolhossein Boali , Seyed Rashid Fallah Shamsi , Vahid Shafaie , Majid Movahedi Rad , Hamid Reza Pourghasemi
{"title":"Assessment of soil erosion patterns in Maharloo watershed using remote sensing techniques and early warning signals","authors":"Farzaneh Fathi ,&nbsp;Narges Kariminejad ,&nbsp;Abdolhossein Boali ,&nbsp;Seyed Rashid Fallah Shamsi ,&nbsp;Vahid Shafaie ,&nbsp;Majid Movahedi Rad ,&nbsp;Hamid Reza Pourghasemi","doi":"10.1016/j.jaridenv.2025.105496","DOIUrl":null,"url":null,"abstract":"<div><div>This study assessed the soil erosion dynamics in Iran's Maharloo watershed using remote sensing indices (Normalized Difference Vegetation Index (NDVI)<strong>,</strong> Normalized Difference Salinity Index (NDSI), and Topsoil Grain Size Index (TGSI)) and machine learning models (RF, SVM, and BRT). Landsat 8 satellite images (2005–2024) were processed via the Google Earth Engine, with field validation ensuring accuracy. Among the indices, TGSI (R<sup>2</sup> = 0.86), NDSI (R<sup>2</sup> = 0.89), and NDVI (R<sup>2</sup> = 0.87) showed the strongest correlations with ground data (Rain, Soil and Vegetation). The RF outperformed the other models (AUC = 0.89), identifying the central and western regions as warning erosion zones. Breakpoint analysis revealed abrupt changes in NDVI and NDSI (2013), while early warning signals (autocorrelation, variance, and skewness) indicated an escalating erosion warning, particularly near wetlands and rainfed fields. Spatial trends highlighted significant NDVI declines (Kendall's τ = 0.69) in wetland peripheries and NDSI increased (τ = 0.52) in northern farmlands. These findings underscore the efficacy of integrating machine learning and remote sensing for erosion monitoring, providing actionable insights for land management and conservation strategies.</div></div>","PeriodicalId":51080,"journal":{"name":"Journal of Arid Environments","volume":"232 ","pages":"Article 105496"},"PeriodicalIF":2.5000,"publicationDate":"2025-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Arid Environments","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0140196325001806","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

This study assessed the soil erosion dynamics in Iran's Maharloo watershed using remote sensing indices (Normalized Difference Vegetation Index (NDVI), Normalized Difference Salinity Index (NDSI), and Topsoil Grain Size Index (TGSI)) and machine learning models (RF, SVM, and BRT). Landsat 8 satellite images (2005–2024) were processed via the Google Earth Engine, with field validation ensuring accuracy. Among the indices, TGSI (R2 = 0.86), NDSI (R2 = 0.89), and NDVI (R2 = 0.87) showed the strongest correlations with ground data (Rain, Soil and Vegetation). The RF outperformed the other models (AUC = 0.89), identifying the central and western regions as warning erosion zones. Breakpoint analysis revealed abrupt changes in NDVI and NDSI (2013), while early warning signals (autocorrelation, variance, and skewness) indicated an escalating erosion warning, particularly near wetlands and rainfed fields. Spatial trends highlighted significant NDVI declines (Kendall's τ = 0.69) in wetland peripheries and NDSI increased (τ = 0.52) in northern farmlands. These findings underscore the efficacy of integrating machine learning and remote sensing for erosion monitoring, providing actionable insights for land management and conservation strategies.
利用遥感技术和早期预警信号评估Maharloo流域土壤侵蚀模式
本研究利用遥感指数(归一化植被指数(NDVI)、归一化盐度指数(NDSI)和表土粒度指数(TGSI))和机器学习模型(RF、SVM和BRT)评估了伊朗Maharloo流域的土壤侵蚀动态。Landsat 8卫星图像(2005-2024)通过谷歌地球引擎进行处理,并进行现场验证以确保准确性。其中,TGSI (R2 = 0.86)、NDSI (R2 = 0.89)和NDVI (R2 = 0.87)与地面数据(雨、土、植被)的相关性最强。该模型优于其他模型(AUC = 0.89),将中部和西部地区确定为侵蚀预警带。断点分析揭示了NDVI和NDSI的突变(2013),而早期预警信号(自相关、方差和偏度)表明侵蚀预警不断升级,特别是在湿地和雨农田附近。在空间趋势上,湿地周边的NDVI显著下降(Kendall’s τ = 0.69),而北部农田的NDSI显著上升(τ = 0.52)。这些发现强调了将机器学习和遥感结合起来进行侵蚀监测的有效性,为土地管理和保护策略提供了可行的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Arid Environments
Journal of Arid Environments 环境科学-环境科学
CiteScore
5.70
自引率
3.70%
发文量
144
审稿时长
55 days
期刊介绍: The Journal of Arid Environments is an international journal publishing original scientific and technical research articles on physical, biological and cultural aspects of arid, semi-arid, and desert environments. As a forum of multi-disciplinary and interdisciplinary dialogue it addresses research on all aspects of arid environments and their past, present and future use.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信