Synthesis and characterization of ultra-stable Bi-based thin films: Tailoring multifunctionality in Bi2-xCoxO3

IF 2.8 3区 物理与天体物理 Q2 PHYSICS, CONDENSED MATTER
Amira Ben Gouider Trabelsi , Ahmed Hassan , Ibrahim M. Sharaf , Fatemah H. Alkallas , Abdelaziz Mohamed Aboraia
{"title":"Synthesis and characterization of ultra-stable Bi-based thin films: Tailoring multifunctionality in Bi2-xCoxO3","authors":"Amira Ben Gouider Trabelsi ,&nbsp;Ahmed Hassan ,&nbsp;Ibrahim M. Sharaf ,&nbsp;Fatemah H. Alkallas ,&nbsp;Abdelaziz Mohamed Aboraia","doi":"10.1016/j.physb.2025.417825","DOIUrl":null,"url":null,"abstract":"<div><div>This study presents the synthesis and comprehensive characterization of ultra-stable cobalt-doped bismuth oxide thin films with the nominal composition Bi<sub>2-x</sub>Co<sub>x</sub>O<sub>3</sub>, prepared via spin coating and subsequent thermal treatments. The incorporation of Co into the Bi<sub>2</sub>O<sub>3</sub> matrix significantly modified the structural, optical, and dielectric properties of the films. XRD analyses confirmed the construction of a stable tetragonal phase with developed crystallinity and strengthened crystallite size (from 21.05 to 37.37 nm) upon increasing cobalt doping. Structural strain and dislocation density were found to decrease with increasing Co concentration, indicating enhanced structural integrity. UV–Vis spectroscopy revealed a tunable bandgap, decreasing initially from 3.12 eV to 2.97 eV, then rising to 3.58 eV at higher doping levels, highlighting quantum confinement and saturation effects. A marked variation in optical constants, for instance, the extinction coefficient, refractive index, and Urbach energy, suggested improved electronic transitions and reduced material disorder. Dielectric studies further indicated enhanced real and imaginary permittivity, while the loss tangent (tan δ) decreased with doping, signifying reduced energy dissipation. Energy loss functions (VELF and SELF) increased with Co content, suggesting potential utility in applications requiring controlled energy dissipation. These findings establish Bi<sub>1.95</sub>Co<sub>0.05</sub>O<sub>3</sub> (BOC-0.05) as a highly stable and multifunctional material, ideal for optoelectronic, catalytic, and high-temperature electronic applications.</div></div>","PeriodicalId":20116,"journal":{"name":"Physica B-condensed Matter","volume":"717 ","pages":"Article 417825"},"PeriodicalIF":2.8000,"publicationDate":"2025-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica B-condensed Matter","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921452625009421","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

Abstract

This study presents the synthesis and comprehensive characterization of ultra-stable cobalt-doped bismuth oxide thin films with the nominal composition Bi2-xCoxO3, prepared via spin coating and subsequent thermal treatments. The incorporation of Co into the Bi2O3 matrix significantly modified the structural, optical, and dielectric properties of the films. XRD analyses confirmed the construction of a stable tetragonal phase with developed crystallinity and strengthened crystallite size (from 21.05 to 37.37 nm) upon increasing cobalt doping. Structural strain and dislocation density were found to decrease with increasing Co concentration, indicating enhanced structural integrity. UV–Vis spectroscopy revealed a tunable bandgap, decreasing initially from 3.12 eV to 2.97 eV, then rising to 3.58 eV at higher doping levels, highlighting quantum confinement and saturation effects. A marked variation in optical constants, for instance, the extinction coefficient, refractive index, and Urbach energy, suggested improved electronic transitions and reduced material disorder. Dielectric studies further indicated enhanced real and imaginary permittivity, while the loss tangent (tan δ) decreased with doping, signifying reduced energy dissipation. Energy loss functions (VELF and SELF) increased with Co content, suggesting potential utility in applications requiring controlled energy dissipation. These findings establish Bi1.95Co0.05O3 (BOC-0.05) as a highly stable and multifunctional material, ideal for optoelectronic, catalytic, and high-temperature electronic applications.
超稳定铋基薄膜的合成与表征:在Bi2-xCoxO3中裁剪多功能性
本研究通过自旋镀膜和后续热处理制备了标称成分为Bi2-xCoxO3的超稳定掺钴氧化铋薄膜,并对其进行了综合表征。在Bi2O3基体中掺入Co显著地改变了薄膜的结构、光学和介电性能。XRD分析证实,随着钴掺杂量的增加,形成了稳定的四方相,结晶度发展,晶粒尺寸增大(从21.05 nm增加到37.37 nm)。随着Co浓度的增加,结构应变和位错密度降低,表明结构完整性增强。紫外可见光谱显示了一个可调谐的带隙,在较高掺杂水平下,带隙从3.12 eV下降到2.97 eV,然后上升到3.58 eV,突出了量子约束和饱和效应。光学常数的显著变化,例如消光系数、折射率和乌尔巴赫能量,表明电子跃迁得到改善,材料无序性降低。电介质研究进一步表明,实介电常数和虚介电常数增强,而损耗正切(tan δ)随掺杂而减小,表明能量耗散减少。能量损失函数(VELF和SELF)随Co含量的增加而增加,这表明在需要控制能量消耗的应用中具有潜在的实用性。这些发现表明Bi1.95Co0.05O3 (BOC-0.05)是一种高度稳定的多功能材料,是光电、催化和高温电子应用的理想材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physica B-condensed Matter
Physica B-condensed Matter 物理-物理:凝聚态物理
CiteScore
4.90
自引率
7.10%
发文量
703
审稿时长
44 days
期刊介绍: Physica B: Condensed Matter comprises all condensed matter and material physics that involve theoretical, computational and experimental work. Papers should contain further developments and a proper discussion on the physics of experimental or theoretical results in one of the following areas: -Magnetism -Materials physics -Nanostructures and nanomaterials -Optics and optical materials -Quantum materials -Semiconductors -Strongly correlated systems -Superconductivity -Surfaces and interfaces
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信