Blowup of solutions for compressible viscoelastic fluid

IF 2.8 2区 数学 Q1 MATHEMATICS, APPLIED
Na Wang , Sébastien Boyaval , Yuxi Hu
{"title":"Blowup of solutions for compressible viscoelastic fluid","authors":"Na Wang ,&nbsp;Sébastien Boyaval ,&nbsp;Yuxi Hu","doi":"10.1016/j.aml.2025.109774","DOIUrl":null,"url":null,"abstract":"<div><div>We prove finite-time blowup of classical solutions for the compressible Upper Convective Maxwell (UCM) viscoelastic fluid system. By establishing a key energy identity and adapting Sideris’ method for compressible flows, we derive a Riccati-type inequality for a momentum functional. For initial data with compactly supported perturbations satisfying a sufficiently large condition, all classical solutions lose regularity in finite time. This constitutes the first rigorous blowup result for multidimensional compressible viscoelastic fluids.</div></div>","PeriodicalId":55497,"journal":{"name":"Applied Mathematics Letters","volume":"173 ","pages":"Article 109774"},"PeriodicalIF":2.8000,"publicationDate":"2025-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics Letters","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0893965925003246","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

We prove finite-time blowup of classical solutions for the compressible Upper Convective Maxwell (UCM) viscoelastic fluid system. By establishing a key energy identity and adapting Sideris’ method for compressible flows, we derive a Riccati-type inequality for a momentum functional. For initial data with compactly supported perturbations satisfying a sufficiently large condition, all classical solutions lose regularity in finite time. This constitutes the first rigorous blowup result for multidimensional compressible viscoelastic fluids.
可压缩粘弹性流体解的爆破
证明了可压缩上对流麦克斯韦粘弹性流体系统经典解的有限时间爆破。通过建立可压缩流的关键能量恒等式并采用Sideris方法,导出了动量泛函的riccati型不等式。对于具有满足足够大条件的紧支持扰动的初始数据,所有经典解在有限时间内都失去正则性。这构成了多维可压缩粘弹性流体的第一个严格爆破结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Mathematics Letters
Applied Mathematics Letters 数学-应用数学
CiteScore
7.70
自引率
5.40%
发文量
347
审稿时长
10 days
期刊介绍: The purpose of Applied Mathematics Letters is to provide a means of rapid publication for important but brief applied mathematical papers. The brief descriptions of any work involving a novel application or utilization of mathematics, or a development in the methodology of applied mathematics is a potential contribution for this journal. This journal''s focus is on applied mathematics topics based on differential equations and linear algebra. Priority will be given to submissions that are likely to appeal to a wide audience.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信