{"title":"d-Separated permutations and q-Stirling numbers of the first kind","authors":"Rosena R.X. Du, Yun Li","doi":"10.1016/j.aam.2025.102976","DOIUrl":null,"url":null,"abstract":"<div><div>Let <em>d</em> be a nonnegative integer, a <em>d</em>-separated permutation is a permutation in which every two left-to-right minima are at distance greater than <em>d</em>. More precisely, for <span><math><mi>π</mi><mo>=</mo><msub><mrow><mi>π</mi></mrow><mrow><mn>1</mn></mrow></msub><msub><mrow><mi>π</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>⋯</mo><msub><mrow><mi>π</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>∈</mo><msub><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>, suppose that <span><math><msub><mrow><mi>π</mi></mrow><mrow><msub><mrow><mi>i</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></msub><mo>,</mo><msub><mrow><mi>π</mi></mrow><mrow><msub><mrow><mi>i</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>π</mi></mrow><mrow><msub><mrow><mi>i</mi></mrow><mrow><mi>k</mi></mrow></msub></mrow></msub></math></span> are the left-to-right minima of <em>π</em> with <span><math><mi>k</mi><mo>≥</mo><mn>1</mn></math></span> and <span><math><mn>1</mn><mo>=</mo><msub><mrow><mi>i</mi></mrow><mrow><mn>1</mn></mrow></msub><mo><</mo><msub><mrow><mi>i</mi></mrow><mrow><mn>2</mn></mrow></msub><mo><</mo><mo>⋯</mo><mo><</mo><msub><mrow><mi>i</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>≤</mo><mi>n</mi></math></span>, then <em>π</em> is <em>d</em>-separated if <span><math><msub><mrow><mi>i</mi></mrow><mrow><mi>j</mi></mrow></msub><mo>−</mo><msub><mrow><mi>i</mi></mrow><mrow><mi>j</mi><mo>−</mo><mn>1</mn></mrow></msub><mo>></mo><mi>d</mi></math></span> for each <em>j</em>, <span><math><mn>1</mn><mo><</mo><mi>j</mi><mo>≤</mo><mi>k</mi></math></span>. In this paper we study different enumerative properties on <em>d</em>-separated permutations. We first give a recurrence formula of the numbers <span><math><msup><mrow><mi>c</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>(</mo><mi>n</mi><mo>,</mo><mi>k</mi><mo>)</mo></math></span> of <em>d</em>-separated permutations in <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> with exactly <em>k</em> left-to-right minima. Then we study the inversion and co-inversion polynomials of <em>d</em>-separated permutations, and give <em>q</em>-analogue <span><math><msubsup><mrow><mi>c</mi></mrow><mrow><mi>q</mi></mrow><mrow><mi>d</mi></mrow></msubsup><mo>(</mo><mi>n</mi><mo>,</mo><mi>k</mi><mo>)</mo></math></span> and <span><math><mo>(</mo><mi>p</mi><mo>,</mo><mi>q</mi><mo>)</mo></math></span>-analogue <span><math><msubsup><mrow><mi>c</mi></mrow><mrow><mi>p</mi><mo>,</mo><mi>q</mi></mrow><mrow><mi>d</mi></mrow></msubsup><mo>(</mo><mi>n</mi><mo>,</mo><mi>k</mi><mo>)</mo></math></span> of <span><math><msup><mrow><mi>c</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>(</mo><mi>n</mi><mo>,</mo><mi>k</mi><mo>)</mo></math></span> for any <em>d</em>. Note that when <span><math><mi>d</mi><mo>=</mo><mn>0</mn></math></span>, 0-separated permutations are just all permutations in <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>, <span><math><msup><mrow><mi>c</mi></mrow><mrow><mn>0</mn></mrow></msup><mo>(</mo><mi>n</mi><mo>,</mo><mi>k</mi><mo>)</mo></math></span> is Stirling number of the first kind, and the two polynomials <span><math><msubsup><mrow><mi>c</mi></mrow><mrow><mi>q</mi></mrow><mrow><mi>d</mi></mrow></msubsup><mo>(</mo><mi>n</mi><mo>,</mo><mi>k</mi><mo>)</mo></math></span> and <span><math><msubsup><mrow><mi>c</mi></mrow><mrow><mi>p</mi><mo>,</mo><mn>1</mn></mrow><mrow><mi>d</mi></mrow></msubsup><mo>(</mo><mi>n</mi><mo>,</mo><mi>k</mi><mo>)</mo></math></span> are both generalizations of <em>q</em>-Stirling numbers of the first kind. The <em>q</em>-Stirling numbers of the first kind when <span><math><mi>d</mi><mo>=</mo><mn>0</mn></math></span> have been well studied by Médicis-Leroux and Cai-Readdy, who gave nice combinatorial interpretations via rook placements on a staircase chessboard. We give a bijection between permutations and rook placements in staircase chessboards.</div></div>","PeriodicalId":50877,"journal":{"name":"Advances in Applied Mathematics","volume":"173 ","pages":"Article 102976"},"PeriodicalIF":1.3000,"publicationDate":"2025-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0196885825001381","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Let d be a nonnegative integer, a d-separated permutation is a permutation in which every two left-to-right minima are at distance greater than d. More precisely, for , suppose that are the left-to-right minima of π with and , then π is d-separated if for each j, . In this paper we study different enumerative properties on d-separated permutations. We first give a recurrence formula of the numbers of d-separated permutations in with exactly k left-to-right minima. Then we study the inversion and co-inversion polynomials of d-separated permutations, and give q-analogue and -analogue of for any d. Note that when , 0-separated permutations are just all permutations in , is Stirling number of the first kind, and the two polynomials and are both generalizations of q-Stirling numbers of the first kind. The q-Stirling numbers of the first kind when have been well studied by Médicis-Leroux and Cai-Readdy, who gave nice combinatorial interpretations via rook placements on a staircase chessboard. We give a bijection between permutations and rook placements in staircase chessboards.
期刊介绍:
Interdisciplinary in its coverage, Advances in Applied Mathematics is dedicated to the publication of original and survey articles on rigorous methods and results in applied mathematics. The journal features articles on discrete mathematics, discrete probability theory, theoretical statistics, mathematical biology and bioinformatics, applied commutative algebra and algebraic geometry, convexity theory, experimental mathematics, theoretical computer science, and other areas.
Emphasizing papers that represent a substantial mathematical advance in their field, the journal is an excellent source of current information for mathematicians, computer scientists, applied mathematicians, physicists, statisticians, and biologists. Over the past ten years, Advances in Applied Mathematics has published research papers written by many of the foremost mathematicians of our time.