Error estimation and step size control with minimal subsystem interfaces

IF 3.5 2区 计算机科学 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Lars T. Kyllingstad , Severin Sadjina , Stian Skjong
{"title":"Error estimation and step size control with minimal subsystem interfaces","authors":"Lars T. Kyllingstad ,&nbsp;Severin Sadjina ,&nbsp;Stian Skjong","doi":"10.1016/j.simpat.2025.103209","DOIUrl":null,"url":null,"abstract":"<div><div>We review error estimation methods for co-simulation, in particular methods that are applicable when the subsystems provide minimal interfaces. By this, we mean that subsystems do not support rollback of time steps, do not output derivatives, and do not provide any other information about their internals besides the output variables that are required for coupling with other subsystems. Such “black-box” subsystems are common in industrial applications, and the ability to couple them and run large-system simulations is one of the major attractions of the co-simulation paradigm. We also describe how the resulting error indicators may be used to automatically control macro time step sizes to strike a good balance between simulation speed and accuracy. The various elements of the step size control algorithm are presented in pseudocode so that readers may implement them and test them in their own applications. We provide practicable advice on how to use error indicators to judge the quality of a co-simulation, how to avoid common pitfalls, and how to configure the step size control algorithm.</div></div>","PeriodicalId":49518,"journal":{"name":"Simulation Modelling Practice and Theory","volume":"145 ","pages":"Article 103209"},"PeriodicalIF":3.5000,"publicationDate":"2025-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Simulation Modelling Practice and Theory","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1569190X25001443","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

We review error estimation methods for co-simulation, in particular methods that are applicable when the subsystems provide minimal interfaces. By this, we mean that subsystems do not support rollback of time steps, do not output derivatives, and do not provide any other information about their internals besides the output variables that are required for coupling with other subsystems. Such “black-box” subsystems are common in industrial applications, and the ability to couple them and run large-system simulations is one of the major attractions of the co-simulation paradigm. We also describe how the resulting error indicators may be used to automatically control macro time step sizes to strike a good balance between simulation speed and accuracy. The various elements of the step size control algorithm are presented in pseudocode so that readers may implement them and test them in their own applications. We provide practicable advice on how to use error indicators to judge the quality of a co-simulation, how to avoid common pitfalls, and how to configure the step size control algorithm.
最小子系统接口误差估计与步长控制
我们回顾了联合仿真的误差估计方法,特别是当子系统提供最小接口时适用的方法。通过这一点,我们的意思是子系统不支持时间步骤的回滚,不输出导数,并且除了与其他子系统耦合所需的输出变量之外,不提供关于其内部的任何其他信息。这样的“黑盒”子系统在工业应用中很常见,耦合它们并运行大型系统仿真的能力是联合仿真范式的主要吸引力之一。我们还描述了如何使用产生的误差指标来自动控制宏时间步长,以在仿真速度和精度之间取得良好的平衡。步长控制算法的各种元素以伪代码的形式呈现,以便读者可以在自己的应用程序中实现和测试它们。我们就如何使用误差指标来判断联合模拟的质量,如何避免常见的陷阱,以及如何配置步长控制算法提供了切实可行的建议。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Simulation Modelling Practice and Theory
Simulation Modelling Practice and Theory 工程技术-计算机:跨学科应用
CiteScore
9.80
自引率
4.80%
发文量
142
审稿时长
21 days
期刊介绍: The journal Simulation Modelling Practice and Theory provides a forum for original, high-quality papers dealing with any aspect of systems simulation and modelling. The journal aims at being a reference and a powerful tool to all those professionally active and/or interested in the methods and applications of simulation. Submitted papers will be peer reviewed and must significantly contribute to modelling and simulation in general or use modelling and simulation in application areas. Paper submission is solicited on: • theoretical aspects of modelling and simulation including formal modelling, model-checking, random number generators, sensitivity analysis, variance reduction techniques, experimental design, meta-modelling, methods and algorithms for validation and verification, selection and comparison procedures etc.; • methodology and application of modelling and simulation in any area, including computer systems, networks, real-time and embedded systems, mobile and intelligent agents, manufacturing and transportation systems, management, engineering, biomedical engineering, economics, ecology and environment, education, transaction handling, etc.; • simulation languages and environments including those, specific to distributed computing, grid computing, high performance computers or computer networks, etc.; • distributed and real-time simulation, simulation interoperability; • tools for high performance computing simulation, including dedicated architectures and parallel computing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信