Prediction and key drivers analysis of forest surface Dead Fine Fuel Moisture Content: A stacking ensemble learning and IoT-based system

IF 5.6 Q1 ENVIRONMENTAL SCIENCES
Yize Li , Change Zheng , Ye Tian , Xiaodong Liu , Feng Chen , Wenbin Cui
{"title":"Prediction and key drivers analysis of forest surface Dead Fine Fuel Moisture Content: A stacking ensemble learning and IoT-based system","authors":"Yize Li ,&nbsp;Change Zheng ,&nbsp;Ye Tian ,&nbsp;Xiaodong Liu ,&nbsp;Feng Chen ,&nbsp;Wenbin Cui","doi":"10.1016/j.indic.2025.100937","DOIUrl":null,"url":null,"abstract":"<div><div>Dead Fine Fuel Moisture Content (DFFMC) is a critical factor influencing wildfire risk and fire spread behavior in forest fire management. DFFMC field-measurement relies on manual sampling, suffering from slow response, high labor costs, and limited spatial coverage. Moreover, existing predictive models of DFFMC are mostly based on single machine learning algorithms, which struggle to balance spatial generalization and local fitting capabilities, thereby limiting overall model performance. This study proposes a DFFMC prediction approach that integrates a stacking ensemble learning model with a hybrid dataset from different regions and Internet of Things (IoT) technology, offering the advantages of high accuracy, high spatial generalization, and rapid responsiveness. A stacking ensemble learning model was trained using publicly available international datasets covering diverse ecological and climatic zones. To evaluate the model’s spatial generalization capability, field data collected from Bajia Country Park in Beijing, China, were used exclusively as an independent validation set. The model demonstrated strong predictive performance on the domestic dataset, achieving a correlation coefficient of 0.91 and a mean absolute error below 2. Key drivers analysis revealed that humidity and precipitation are the key drivers of DFFMC. Partial dependence plots indicate nonlinear DFFMC responses when humidity exceeds 60% and precipitation surpasses 3 mm. Bivariate dependence analysis further highlights complex interactions among meteorological factors, underscoring the value of multi-factor modeling for accurate DFFMC prediction and wildfire risk management.</div></div>","PeriodicalId":36171,"journal":{"name":"Environmental and Sustainability Indicators","volume":"28 ","pages":"Article 100937"},"PeriodicalIF":5.6000,"publicationDate":"2025-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental and Sustainability Indicators","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2665972725003587","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Dead Fine Fuel Moisture Content (DFFMC) is a critical factor influencing wildfire risk and fire spread behavior in forest fire management. DFFMC field-measurement relies on manual sampling, suffering from slow response, high labor costs, and limited spatial coverage. Moreover, existing predictive models of DFFMC are mostly based on single machine learning algorithms, which struggle to balance spatial generalization and local fitting capabilities, thereby limiting overall model performance. This study proposes a DFFMC prediction approach that integrates a stacking ensemble learning model with a hybrid dataset from different regions and Internet of Things (IoT) technology, offering the advantages of high accuracy, high spatial generalization, and rapid responsiveness. A stacking ensemble learning model was trained using publicly available international datasets covering diverse ecological and climatic zones. To evaluate the model’s spatial generalization capability, field data collected from Bajia Country Park in Beijing, China, were used exclusively as an independent validation set. The model demonstrated strong predictive performance on the domestic dataset, achieving a correlation coefficient of 0.91 and a mean absolute error below 2. Key drivers analysis revealed that humidity and precipitation are the key drivers of DFFMC. Partial dependence plots indicate nonlinear DFFMC responses when humidity exceeds 60% and precipitation surpasses 3 mm. Bivariate dependence analysis further highlights complex interactions among meteorological factors, underscoring the value of multi-factor modeling for accurate DFFMC prediction and wildfire risk management.
森林地表死细燃料含水率预测及关键驱动因素分析:基于层叠集成学习和物联网的系统
在森林火灾管理中,死细燃料含水率(DFFMC)是影响森林火灾风险和蔓延行为的关键因素。DFFMC现场测量依赖于人工采样,存在响应慢、人工成本高、空间覆盖有限等问题。此外,现有的DFFMC预测模型大多基于单一的机器学习算法,难以平衡空间泛化和局部拟合能力,从而限制了模型的整体性能。本研究提出了一种DFFMC预测方法,该方法将堆叠集成学习模型与不同地区的混合数据集和物联网技术相结合,具有高精度、高空间泛化和快速响应的优点。利用覆盖不同生态和气候带的公开国际数据集训练了一个堆叠集成学习模型。为了评估模型的空间推广能力,我们将北京巴家公园的野外数据作为独立的验证集。该模型在国内数据集上表现出较强的预测性能,相关系数为0.91,平均绝对误差小于2。关键驱动因素分析表明,湿度和降水是DFFMC的关键驱动因素。部分相关图显示,当湿度超过60%、降水量超过3mm时,DFFMC响应呈非线性。双变量依赖分析进一步强调了气象因子之间复杂的相互作用,强调了多因素建模对DFFMC准确预测和野火风险管理的价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Environmental and Sustainability Indicators
Environmental and Sustainability Indicators Environmental Science-Environmental Science (miscellaneous)
CiteScore
7.80
自引率
2.30%
发文量
49
审稿时长
57 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信