{"title":"The square-root law does not hold in the presence of zero divisors","authors":"Nathaniel Kingsbury-Neuschotz","doi":"10.1016/j.jnt.2025.08.020","DOIUrl":null,"url":null,"abstract":"<div><div>Let <em>R</em> be a finite ring (with identity, not necessarily commutative) and define the paraboloid <span><math><mi>P</mi><mo>=</mo><mo>{</mo><mo>(</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>x</mi></mrow><mrow><mi>d</mi></mrow></msub><mo>)</mo><mo>∈</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>|</mo><msub><mrow><mi>x</mi></mrow><mrow><mi>d</mi></mrow></msub><mo>=</mo><msubsup><mrow><mi>x</mi></mrow><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></msubsup><mo>+</mo><mo>…</mo><mo>+</mo><msubsup><mrow><mi>x</mi></mrow><mrow><mi>d</mi><mo>−</mo><mn>1</mn></mrow><mrow><mn>2</mn></mrow></msubsup><mo>}</mo></math></span>. Suppose that for a sequence of finite rings of size tending to infinity, the Fourier transform of <em>P</em> satisfies a square-root law of the form <span><math><mo>|</mo><mover><mrow><mi>P</mi></mrow><mrow><mo>ˆ</mo></mrow></mover><mo>(</mo><mi>ψ</mi><mo>)</mo><mo>|</mo><mo>≤</mo><mi>C</mi><mo>|</mo><mi>R</mi><msup><mrow><mo>|</mo></mrow><mrow><mo>−</mo><mi>d</mi></mrow></msup><mo>|</mo><mi>P</mi><msup><mrow><mo>|</mo></mrow><mrow><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></msup></math></span> for all nontrivial additive characters <em>ψ</em>, with <em>C</em> some fixed constant (for instance, if <em>R</em> is a finite field, this bound will be satisfied with <span><math><mi>C</mi><mo>=</mo><mn>1</mn></math></span>). Then all but finitely many of the rings are fields.</div><div>Most of our argument works in greater generality: let <em>f</em> be a polynomial with integer coefficients in <span><math><mi>d</mi><mo>−</mo><mn>1</mn></math></span> variables, with a fixed order of variable multiplications (so that it defines a function <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi><mo>−</mo><mn>1</mn></mrow></msup><mo>→</mo><mi>R</mi></math></span> even when <em>R</em> is noncommutative), and set <span><math><msub><mrow><mi>V</mi></mrow><mrow><mi>f</mi></mrow></msub><mo>=</mo><mo>{</mo><mo>(</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>x</mi></mrow><mrow><mi>d</mi></mrow></msub><mo>)</mo><mo>∈</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>|</mo><msub><mrow><mi>x</mi></mrow><mrow><mi>d</mi></mrow></msub><mo>=</mo><mi>f</mi><mo>(</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>x</mi></mrow><mrow><mi>d</mi><mo>−</mo><mn>1</mn></mrow></msub><mo>)</mo><mo>}</mo></math></span>. If (for a sequence of finite rings of size tending to infinity) we have a square root law for the Fourier transform of <span><math><msub><mrow><mi>V</mi></mrow><mrow><mi>f</mi></mrow></msub></math></span>, then all but finitely many of the rings are fields or matrix rings of small dimension. We also describe how our techniques can establish that certain varieties do not satisfy a square root law even over finite fields.</div></div>","PeriodicalId":50110,"journal":{"name":"Journal of Number Theory","volume":"280 ","pages":"Pages 481-505"},"PeriodicalIF":0.7000,"publicationDate":"2025-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Number Theory","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022314X25002549","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Let R be a finite ring (with identity, not necessarily commutative) and define the paraboloid . Suppose that for a sequence of finite rings of size tending to infinity, the Fourier transform of P satisfies a square-root law of the form for all nontrivial additive characters ψ, with C some fixed constant (for instance, if R is a finite field, this bound will be satisfied with ). Then all but finitely many of the rings are fields.
Most of our argument works in greater generality: let f be a polynomial with integer coefficients in variables, with a fixed order of variable multiplications (so that it defines a function even when R is noncommutative), and set . If (for a sequence of finite rings of size tending to infinity) we have a square root law for the Fourier transform of , then all but finitely many of the rings are fields or matrix rings of small dimension. We also describe how our techniques can establish that certain varieties do not satisfy a square root law even over finite fields.
期刊介绍:
The Journal of Number Theory (JNT) features selected research articles that represent the broad spectrum of interest in contemporary number theory and allied areas. A valuable resource for mathematicians, the journal provides an international forum for the publication of original research in this field.
The Journal of Number Theory is encouraging submissions of quality, long articles where most or all of the technical details are included. The journal now considers and welcomes also papers in Computational Number Theory.
Starting in May 2019, JNT will have a new format with 3 sections:
JNT Prime targets (possibly very long with complete proofs) high impact papers. Articles published in this section will be granted 1 year promotional open access.
JNT General Section is for shorter papers. We particularly encourage submission from junior researchers. Every attempt will be made to expedite the review process for such submissions.
Computational JNT . This section aims to provide a forum to disseminate contributions which make significant use of computer calculations to derive novel number theoretic results. There will be an online repository where supplementary codes and data can be stored.