Suppression of high-order detent force harmonics in motor structures using a double-sided asymmetric primary design

IF 3.7 2区 工程技术 Q2 ENGINEERING, MANUFACTURING
Peng Guo , Yongjian Li , Peng Su , Zilong Li
{"title":"Suppression of high-order detent force harmonics in motor structures using a double-sided asymmetric primary design","authors":"Peng Guo ,&nbsp;Yongjian Li ,&nbsp;Peng Su ,&nbsp;Zilong Li","doi":"10.1016/j.precisioneng.2025.09.026","DOIUrl":null,"url":null,"abstract":"<div><div>In high-slot-count linear motors, mismatched end force and cogging force harmonics make high-order detent forces hard to suppress, leading to large thrust ripples. To address this, a double-sided, asymmetric primary structure is proposed that suppresses high-order detent force harmonics, reduces overall detent force, and enhances thrust performance. The motor's geometry and operating principles are first described, followed by derivation of a detent force model and detailed analysis of the harmonic suppression mechanism. Quantitative suppression criteria are then established, and a multi-objective optimization framework is developed to identify an optimal motor configuration for detent force minimization. Comparative analysis with a conventional symmetric primary confirms the proposed structure's effectiveness and robustness. A prototype motor is manufactured and tested, demonstrating a thrust ripple reduction to just 2.89 %. These results validate the design's efficacy and provide novel methodologies and insights for linear-motor structure design and detent-force suppression.</div></div>","PeriodicalId":54589,"journal":{"name":"Precision Engineering-Journal of the International Societies for Precision Engineering and Nanotechnology","volume":"97 ","pages":"Pages 380-390"},"PeriodicalIF":3.7000,"publicationDate":"2025-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Precision Engineering-Journal of the International Societies for Precision Engineering and Nanotechnology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0141635925002922","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0

Abstract

In high-slot-count linear motors, mismatched end force and cogging force harmonics make high-order detent forces hard to suppress, leading to large thrust ripples. To address this, a double-sided, asymmetric primary structure is proposed that suppresses high-order detent force harmonics, reduces overall detent force, and enhances thrust performance. The motor's geometry and operating principles are first described, followed by derivation of a detent force model and detailed analysis of the harmonic suppression mechanism. Quantitative suppression criteria are then established, and a multi-objective optimization framework is developed to identify an optimal motor configuration for detent force minimization. Comparative analysis with a conventional symmetric primary confirms the proposed structure's effectiveness and robustness. A prototype motor is manufactured and tested, demonstrating a thrust ripple reduction to just 2.89 %. These results validate the design's efficacy and provide novel methodologies and insights for linear-motor structure design and detent-force suppression.
利用双面非对称设计抑制电机结构中高阶减振力谐波
在高槽数直线电机中,不匹配的端力和齿槽力谐波使高阶制动力难以抑制,导致较大的推力波动。为了解决这个问题,提出了一种双面非对称初级结构,以抑制高阶支路力谐波,降低整体支路力,并提高推力性能。首先描述了电机的几何形状和工作原理,然后推导了一个制动器力模型,并详细分析了谐波抑制机理。然后建立了定量抑制标准,并开发了一个多目标优化框架,以确定最优的电机配置,以实现制动力最小化。与传统的对称原始结构的对比分析证实了该结构的有效性和鲁棒性。一个原型电机被制造和测试,表明推力脉动减少仅为2.89%。这些结果验证了设计的有效性,并为直线电机结构设计和防阻力抑制提供了新的方法和见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.40
自引率
5.60%
发文量
177
审稿时长
46 days
期刊介绍: Precision Engineering - Journal of the International Societies for Precision Engineering and Nanotechnology is devoted to the multidisciplinary study and practice of high accuracy engineering, metrology, and manufacturing. The journal takes an integrated approach to all subjects related to research, design, manufacture, performance validation, and application of high precision machines, instruments, and components, including fundamental and applied research and development in manufacturing processes, fabrication technology, and advanced measurement science. The scope includes precision-engineered systems and supporting metrology over the full range of length scales, from atom-based nanotechnology and advanced lithographic technology to large-scale systems, including optical and radio telescopes and macrometrology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信