{"title":"Discontinuous Galerkin time-stepping method for semilinear parabolic problems with mild growth condition","authors":"Raksha Devi, Dwijendra Narain Pandey","doi":"10.1016/j.camwa.2025.09.035","DOIUrl":null,"url":null,"abstract":"<div><div>We investigate the numerical solution of semilinear parabolic equations under mild growth conditions on the nonlinear source function, focusing on time discretization using the discontinuous Galerkin (DG) method. A novel technique is proposed for handling terms that arise from mild growth condition during the application of the DG method in time. This approach ensures the solvability of the semi-discrete scheme without requiring any boundedness assumptions on the nonlinearity. Additionally, we establish the optimal order of convergence for the semi-discrete approach. Subsequently, we combine the continuous Galerkin method in space with the discontinuous Galerkin method in the temporal direction to develop a fully discrete scheme. We demonstrate that the fully discrete (DG-CG) scheme achieves optimal convergence rates while accommodating the mild growth conditions under various hypotheses on the exact solution <em>u</em>. Our theoretical findings are verified through a series of numerical experiments.</div></div>","PeriodicalId":55218,"journal":{"name":"Computers & Mathematics with Applications","volume":"198 ","pages":"Pages 274-292"},"PeriodicalIF":2.5000,"publicationDate":"2025-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Mathematics with Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S089812212500416X","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
We investigate the numerical solution of semilinear parabolic equations under mild growth conditions on the nonlinear source function, focusing on time discretization using the discontinuous Galerkin (DG) method. A novel technique is proposed for handling terms that arise from mild growth condition during the application of the DG method in time. This approach ensures the solvability of the semi-discrete scheme without requiring any boundedness assumptions on the nonlinearity. Additionally, we establish the optimal order of convergence for the semi-discrete approach. Subsequently, we combine the continuous Galerkin method in space with the discontinuous Galerkin method in the temporal direction to develop a fully discrete scheme. We demonstrate that the fully discrete (DG-CG) scheme achieves optimal convergence rates while accommodating the mild growth conditions under various hypotheses on the exact solution u. Our theoretical findings are verified through a series of numerical experiments.
期刊介绍:
Computers & Mathematics with Applications provides a medium of exchange for those engaged in fields contributing to building successful simulations for science and engineering using Partial Differential Equations (PDEs).