Locomotive wheel-slip control with slip ratio reference adaptation using model-based estimation

IF 4.6 2区 计算机科学 Q1 AUTOMATION & CONTROL SYSTEMS
Charl V. van de Merwe , Johan D. le Roux , David J.N. Limebeer
{"title":"Locomotive wheel-slip control with slip ratio reference adaptation using model-based estimation","authors":"Charl V. van de Merwe ,&nbsp;Johan D. le Roux ,&nbsp;David J.N. Limebeer","doi":"10.1016/j.conengprac.2025.106597","DOIUrl":null,"url":null,"abstract":"<div><div>This paper investigates the wheel-slip control of locomotive traction systems in the presence of uncertain wheel-rail rolling contact conditions. A linear estimator is used to produce estimates of the wheels’ slip ratios and adhesion coefficients. These estimates are used as part of a slip ratio reference adaptation scheme that provides a reference to an adaptive PI controller. The control architecture is intentionally designed to be suitable for practical deployment in industrial settings, where simplicity and reliability are essential. A detailed pitch-plane simulation model is used to validate the controller performance. The results indicate that the estimator-controller combination can prevent unstable slip over a wide range of adhesion conditions, thereby preventing damage to the wheels and rail while ensuring maximum adhesion.</div></div>","PeriodicalId":50615,"journal":{"name":"Control Engineering Practice","volume":"165 ","pages":"Article 106597"},"PeriodicalIF":4.6000,"publicationDate":"2025-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Control Engineering Practice","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0967066125003594","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper investigates the wheel-slip control of locomotive traction systems in the presence of uncertain wheel-rail rolling contact conditions. A linear estimator is used to produce estimates of the wheels’ slip ratios and adhesion coefficients. These estimates are used as part of a slip ratio reference adaptation scheme that provides a reference to an adaptive PI controller. The control architecture is intentionally designed to be suitable for practical deployment in industrial settings, where simplicity and reliability are essential. A detailed pitch-plane simulation model is used to validate the controller performance. The results indicate that the estimator-controller combination can prevent unstable slip over a wide range of adhesion conditions, thereby preventing damage to the wheels and rail while ensuring maximum adhesion.
基于模型估计的机车轮滑率参考自适应控制
研究了不确定轮轨滚动接触条件下机车牵引系统的轮滑控制问题。使用线性估计器来估计车轮的滑移率和附着系数。这些估计被用作滑移率参考自适应方案的一部分,该方案为自适应PI控制器提供参考。控制体系结构是有意设计为适合在工业环境中的实际部署,其中简单性和可靠性是必不可少的。采用详细的俯仰平面仿真模型验证了控制器的性能。结果表明,该估计器-控制器组合可以在很大范围内防止不稳定滑移,从而在保证最大附着力的同时防止轮轨损坏。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Control Engineering Practice
Control Engineering Practice 工程技术-工程:电子与电气
CiteScore
9.20
自引率
12.20%
发文量
183
审稿时长
44 days
期刊介绍: Control Engineering Practice strives to meet the needs of industrial practitioners and industrially related academics and researchers. It publishes papers which illustrate the direct application of control theory and its supporting tools in all possible areas of automation. As a result, the journal only contains papers which can be considered to have made significant contributions to the application of advanced control techniques. It is normally expected that practical results should be included, but where simulation only studies are available, it is necessary to demonstrate that the simulation model is representative of a genuine application. Strictly theoretical papers will find a more appropriate home in Control Engineering Practice''s sister publication, Automatica. It is also expected that papers are innovative with respect to the state of the art and are sufficiently detailed for a reader to be able to duplicate the main results of the paper (supplementary material, including datasets, tables, code and any relevant interactive material can be made available and downloaded from the website). The benefits of the presented methods must be made very clear and the new techniques must be compared and contrasted with results obtained using existing methods. Moreover, a thorough analysis of failures that may happen in the design process and implementation can also be part of the paper. The scope of Control Engineering Practice matches the activities of IFAC. Papers demonstrating the contribution of automation and control in improving the performance, quality, productivity, sustainability, resource and energy efficiency, and the manageability of systems and processes for the benefit of mankind and are relevant to industrial practitioners are most welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信