Low-temperature synthesis of N,S-Co-doped fluorescent carbon nanoparticles for highly sensitive Fe³⁺ detection in water

IF 3.9 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
P.E. Cardoso-Ávila , J.L. Pichardo-Molina , L. Aparicio-Ixta , M.M. Martínez-García , A. Benitez-Lara , M.C. Mendoza-Ramirez
{"title":"Low-temperature synthesis of N,S-Co-doped fluorescent carbon nanoparticles for highly sensitive Fe³⁺ detection in water","authors":"P.E. Cardoso-Ávila ,&nbsp;J.L. Pichardo-Molina ,&nbsp;L. Aparicio-Ixta ,&nbsp;M.M. Martínez-García ,&nbsp;A. Benitez-Lara ,&nbsp;M.C. Mendoza-Ramirez","doi":"10.1016/j.cartre.2025.100578","DOIUrl":null,"url":null,"abstract":"<div><div>We report a facile, low-temperature, and environmentally friendly base-catalyzed hydrothermal method for synthesizing nitrogen and sulfur co-doped fluorescent carbon nanoparticles (N,S-FC<img>NPs) from <span>l</span>-cysteine as a single precursor. The reaction proceeds at only 60 °C in aqueous medium, eliminating the need for high-energy input or post-synthesis purification steps. By adjusting the alkaline reaction conditions, the optical absorption, band gap, and surface chemistry of the nanoparticles were tuned, as confirmed by FT–IR, XRD, EDS, XPS, and HR-TEM analyses. The as-prepared N,S-FC<img>NPs exhibited an average size of 31.4 ± 1.8 nm, stable green emission at 535 nm under 400 nm excitation, and a fluorescence quantum yield of 3.9 %. Among the synthesized variants, the C4 formulation displayed outstanding performance as a Fe³⁺ sensor in aqueous media, with high selectivity and a detection limit of 7 ppb, well below the WHO guideline for drinking water. Compared to conventional carbon-dot syntheses requiring higher temperatures, this low-temperature route offers significant energy savings, reduced environmental impact, and preservation of surface functionalities derived from the precursor. The method provides a scalable platform for producing heteroatom-doped carbon nanomaterials with tailored optical properties for environmental sensing and other advanced applications.</div></div>","PeriodicalId":52629,"journal":{"name":"Carbon Trends","volume":"21 ","pages":"Article 100578"},"PeriodicalIF":3.9000,"publicationDate":"2025-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Trends","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667056925001270","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

We report a facile, low-temperature, and environmentally friendly base-catalyzed hydrothermal method for synthesizing nitrogen and sulfur co-doped fluorescent carbon nanoparticles (N,S-FCNPs) from l-cysteine as a single precursor. The reaction proceeds at only 60 °C in aqueous medium, eliminating the need for high-energy input or post-synthesis purification steps. By adjusting the alkaline reaction conditions, the optical absorption, band gap, and surface chemistry of the nanoparticles were tuned, as confirmed by FT–IR, XRD, EDS, XPS, and HR-TEM analyses. The as-prepared N,S-FCNPs exhibited an average size of 31.4 ± 1.8 nm, stable green emission at 535 nm under 400 nm excitation, and a fluorescence quantum yield of 3.9 %. Among the synthesized variants, the C4 formulation displayed outstanding performance as a Fe³⁺ sensor in aqueous media, with high selectivity and a detection limit of 7 ppb, well below the WHO guideline for drinking water. Compared to conventional carbon-dot syntheses requiring higher temperatures, this low-temperature route offers significant energy savings, reduced environmental impact, and preservation of surface functionalities derived from the precursor. The method provides a scalable platform for producing heteroatom-doped carbon nanomaterials with tailored optical properties for environmental sensing and other advanced applications.
低温合成N, s共掺杂荧光碳纳米颗粒用于水中高灵敏度的Fe³+检测
我们报道了一种简单、低温、环保的碱催化水热方法,以l-半胱氨酸为单一前驱体合成氮和硫共掺杂的荧光碳纳米颗粒(N,S-FCNPs)。反应仅在60°C的水介质中进行,无需高能输入或合成后纯化步骤。通过FT-IR、XRD、EDS、XPS和HR-TEM分析证实,通过调整碱性反应条件,纳米粒子的光吸收、带隙和表面化学性质得到了调整。所制备的N,S-FCNPs的平均尺寸为31.4±1.8 nm,在400 nm激发下在535 nm处有稳定的绿色发光,荧光量子产率为3.9%。在合成的变体中,C4配方在水介质中作为Fe +传感器表现出出色的性能,具有高选择性和7 ppb的检测限,远低于世卫组织饮用水指南。与需要更高温度的传统碳点合成相比,这种低温合成方法显著节省了能源,减少了对环境的影响,并保留了前驱体的表面功能。该方法为生产具有定制光学特性的杂原子掺杂碳纳米材料提供了可扩展的平台,可用于环境传感和其他先进应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Carbon Trends
Carbon Trends Materials Science-Materials Science (miscellaneous)
CiteScore
4.60
自引率
0.00%
发文量
88
审稿时长
77 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信