Wave breaking and traveling waves for the quadratic-cubic Camassa–Holm equation

IF 1.8 3区 数学 Q1 MATHEMATICS, APPLIED
Xuanxuan Han, Shaojie Yang
{"title":"Wave breaking and traveling waves for the quadratic-cubic Camassa–Holm equation","authors":"Xuanxuan Han,&nbsp;Shaojie Yang","doi":"10.1016/j.nonrwa.2025.104493","DOIUrl":null,"url":null,"abstract":"<div><div>This paper is concerned with the solutions of the quadratic-cubic Camassa–Holm equation which is a model that explore the change in the physical structure of the solutions from the peakons to the bell-shaped solitary wave solutions. The first type of solutions exhibits finite time singularity in the sense of wave breaking. We perform a refined analysis based on the local structure of the dynamics to provide a condition on the initial data to guarantee wave breaking. The key feature of the method is to refine the analysis on characteristics and conserved quantities to the Riccati-type differential inequality. The other type of solutions which we study is the traveling waves, we investigate nonexistence of the Camassa–Holm-type peaked traveling wave solutions. Moreover, we discover how the symmetric structure is connected to the steady structure of solutions to the quadratic-cubic Camassa–Holm equation, and prove that the classical symmetric waves must be traveling wave solutions.</div></div>","PeriodicalId":49745,"journal":{"name":"Nonlinear Analysis-Real World Applications","volume":"88 ","pages":"Article 104493"},"PeriodicalIF":1.8000,"publicationDate":"2025-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Analysis-Real World Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1468121825001798","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

This paper is concerned with the solutions of the quadratic-cubic Camassa–Holm equation which is a model that explore the change in the physical structure of the solutions from the peakons to the bell-shaped solitary wave solutions. The first type of solutions exhibits finite time singularity in the sense of wave breaking. We perform a refined analysis based on the local structure of the dynamics to provide a condition on the initial data to guarantee wave breaking. The key feature of the method is to refine the analysis on characteristics and conserved quantities to the Riccati-type differential inequality. The other type of solutions which we study is the traveling waves, we investigate nonexistence of the Camassa–Holm-type peaked traveling wave solutions. Moreover, we discover how the symmetric structure is connected to the steady structure of solutions to the quadratic-cubic Camassa–Holm equation, and prove that the classical symmetric waves must be traveling wave solutions.
二次立方Camassa-Holm方程的破波和行波
本文研究了二次-三次Camassa-Holm方程的解,该方程是一个探讨从峰到钟形孤波解的物理结构变化的模型。第一类解在破波意义上表现出有限时间奇点。我们根据动力学的局部结构进行了精细的分析,以提供一个初始数据的条件来保证破波。该方法的主要特点是将特征和守恒量的分析细化到riccati型微分不等式。我们研究的另一类解是行波,我们研究了camassa - holm型峰值行波解的不存在性。此外,我们还发现了对称结构与二次三次Camassa-Holm方程解的稳定结构之间的联系,并证明了经典对称波必须是行波解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.80
自引率
5.00%
发文量
176
审稿时长
59 days
期刊介绍: Nonlinear Analysis: Real World Applications welcomes all research articles of the highest quality with special emphasis on applying techniques of nonlinear analysis to model and to treat nonlinear phenomena with which nature confronts us. Coverage of applications includes any branch of science and technology such as solid and fluid mechanics, material science, mathematical biology and chemistry, control theory, and inverse problems. The aim of Nonlinear Analysis: Real World Applications is to publish articles which are predominantly devoted to employing methods and techniques from analysis, including partial differential equations, functional analysis, dynamical systems and evolution equations, calculus of variations, and bifurcations theory.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信