CATR-Net: Cattle–Attentive transformer with adaptive and enhanced segmentation and recognition

IF 8.9 1区 农林科学 Q1 AGRICULTURE, MULTIDISCIPLINARY
Xiaopu Feng , Jiaying Zhang , Yongsheng Qi , Liqiang Liu , Yongting Li
{"title":"CATR-Net: Cattle–Attentive transformer with adaptive and enhanced segmentation and recognition","authors":"Xiaopu Feng ,&nbsp;Jiaying Zhang ,&nbsp;Yongsheng Qi ,&nbsp;Liqiang Liu ,&nbsp;Yongting Li","doi":"10.1016/j.compag.2025.111038","DOIUrl":null,"url":null,"abstract":"<div><div>In open–range cattle–face analysis, conventional segmentation networks struggle to preserve fine–scale edge cues, and recognition networks weakly model salient regions and local–global context, yielding brittle performance under changing poses and illumination. We propose CATR–Net, an end–to–end framework that unifies segmentation and identification. In its segmentation branch, a Multiscale Edge–enhanced Upsampling Module (MEUM) is grafted onto the DA–TransUNet decoder to restore high–frequency boundaries and suppress up–sampling blur; in the recognition branch, a Dynamic Contextual Attention Module (DCAM) is inserted between the Stem and MaxViT blocks, and Dynamic Adaptive Interaction Normalization (DAIN) replaces the static Layer Normalization in LSRA (Local Region Self-Attention) with DyT (Dynamic tanh), together enabling pose– and scale–aware fusion of local priors with global dependencies. The recognition loss is further equipped with a confidence–gap regularizer that dynamically tunes the Dynamic–Tanh parameters, amplifying ambiguous features while stabilizing high–confidence activations. On a 57645–image multi–pose dataset, the segmentation branch achieves 93.35 % mIoU and 96.45 % mDSC with a 417  MB model, whereas the recognition branch attains 97.03 % accuracy and 95.19 % F1-score with a 457  MB footprint—both surpassing state–of–the–art baselines at comparable complexity.</div></div>","PeriodicalId":50627,"journal":{"name":"Computers and Electronics in Agriculture","volume":"239 ","pages":"Article 111038"},"PeriodicalIF":8.9000,"publicationDate":"2025-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers and Electronics in Agriculture","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168169925011445","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In open–range cattle–face analysis, conventional segmentation networks struggle to preserve fine–scale edge cues, and recognition networks weakly model salient regions and local–global context, yielding brittle performance under changing poses and illumination. We propose CATR–Net, an end–to–end framework that unifies segmentation and identification. In its segmentation branch, a Multiscale Edge–enhanced Upsampling Module (MEUM) is grafted onto the DA–TransUNet decoder to restore high–frequency boundaries and suppress up–sampling blur; in the recognition branch, a Dynamic Contextual Attention Module (DCAM) is inserted between the Stem and MaxViT blocks, and Dynamic Adaptive Interaction Normalization (DAIN) replaces the static Layer Normalization in LSRA (Local Region Self-Attention) with DyT (Dynamic tanh), together enabling pose– and scale–aware fusion of local priors with global dependencies. The recognition loss is further equipped with a confidence–gap regularizer that dynamically tunes the Dynamic–Tanh parameters, amplifying ambiguous features while stabilizing high–confidence activations. On a 57645–image multi–pose dataset, the segmentation branch achieves 93.35 % mIoU and 96.45 % mDSC with a 417  MB model, whereas the recognition branch attains 97.03 % accuracy and 95.19 % F1-score with a 457  MB footprint—both surpassing state–of–the–art baselines at comparable complexity.
CATR-Net:具有自适应和增强分割和识别功能的关注牛的变压器
在露天牧场牛的面部分析中,传统的分割网络难以保留精细尺度的边缘线索,识别网络对显著区域和局部-全局背景的建模能力较弱,在姿势和光照变化的情况下表现不佳。我们提出了CATR-Net,一个端到端的框架,统一的分割和识别。在分割分支中,将多尺度边缘增强上采样模块(MEUM)嫁接到DA-TransUNet解码器上,恢复高频边界,抑制上采样模糊;在识别分支中,在Stem和MaxViT块之间插入动态上下文注意模块(Dynamic Contextual Attention Module, DCAM),动态自适应交互归一化(Dynamic Adaptive Interaction Normalization, DAIN)用DyT (Dynamic tanh)取代LSRA (Local Region Self-Attention)中的静态层归一化,共同实现姿态感知和尺度感知的局部先验与全局依赖的融合。识别损失进一步配备了一个置信度差距正则化器,动态调整Dynamic-Tanh参数,在稳定高置信度激活的同时放大模糊特征。在57645张图像的多姿态数据集上,分割分支在417 MB的模型下实现了93.35%的mIoU和96.45%的mDSC,而识别分支在457 MB的足迹下实现了97.03%的准确率和95.19%的f1得分,两者在相当的复杂性下都超过了最先进的基线。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computers and Electronics in Agriculture
Computers and Electronics in Agriculture 工程技术-计算机:跨学科应用
CiteScore
15.30
自引率
14.50%
发文量
800
审稿时长
62 days
期刊介绍: Computers and Electronics in Agriculture provides international coverage of advancements in computer hardware, software, electronic instrumentation, and control systems applied to agricultural challenges. Encompassing agronomy, horticulture, forestry, aquaculture, and animal farming, the journal publishes original papers, reviews, and applications notes. It explores the use of computers and electronics in plant or animal agricultural production, covering topics like agricultural soils, water, pests, controlled environments, and waste. The scope extends to on-farm post-harvest operations and relevant technologies, including artificial intelligence, sensors, machine vision, robotics, networking, and simulation modeling. Its companion journal, Smart Agricultural Technology, continues the focus on smart applications in production agriculture.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信